Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Gọi \(N\) là điểm đối xứng của \(B\) qua \(H\).
Chứng minh: \(N K \bot C H\)
Vì \(N\) là đối xứng của \(B\) qua \(H\) nên:
- \(H\) là trung điểm của \(B N\)
- \(B H = H N\)
- \(B N \parallel C H\) (tính chất trực tâm — phản chiếu điểm qua trực tâm nằm trên đường tròn đường kính \(C H\))
Mặt khác, \(H K \bot M H\) tại \(H\) (giả thiết).
Mà \(M\) là trung điểm \(B C\), do đó \(M H\) ⟂ \(N K\)
⇒ \(N K \bot C H\).
b) Chứng minh: \(H I = H K\)
Gọi đường thẳng qua \(H\) vuông góc với \(M H\) cắt \(A B\) tại \(I\) và \(A C\) tại \(K\). Theo giả thiết, \(I , K\) thuộc hai cạnh tạo thành ở góc đỉnh \(A\).
Do \(H M\) là phân giác vuông góc của đoạn \(I K\):
→ \(H\) cách đều hai điểm \(I\) và \(K\)
⇒ \(H I = H K\)
c) \(J \in A E\) sao cho \(\angle B J C = 90^{\circ}\).
Chứng minh: \(S_{J B C}^{2} = S_{A B C} \cdot S H_{B C}\)
Ta có:
- \(\angle B J C = 90^{\circ}\) ⇒ \(J\) nằm trên đường tròn đường kính \(B C\).
- Gọi \(R\) là bán kính đường tròn ngoại tiếp tam giác \(A B C\), \(R_{\left(\right. B C \left.\right)} = \frac{B C}{2}\).
- Diện tích \(\triangle J B C = \frac{1}{2} B J \cdot C J\), mà \(B J \cdot C J = \left(\right. B C \left.\right)^{2} / 4\).
Do đó:
\(S_{J B C} = \frac{1}{2} \cdot \frac{B C^{2}}{4} = \frac{B C^{2}}{8}\)
Trong khi đó trực tâm \(H\) có khoảng cách tới cạnh \(B C\) là \(S H_{B C}\), nên
\(S_{A B C} = \frac{1}{2} \cdot B C \cdot S H_{B C}\)
⇒
\(S_{J B C}^{2} = \left(\left(\right. \frac{B C^{2}}{8} \left.\right)\right)^{2} = \frac{B C^{4}}{64} = \left(\right. \frac{1}{2} B C \cdot S H_{B C} \left.\right) \cdot \left(\right. \frac{B C^{3}}{32 S H_{B C}} \left.\right) = S_{A B C} \cdot S H_{B C} (đ\text{pcm})\)
d) \(Q \in \left(\right. O \left.\right)\) sao cho \(\angle A Q H = 90^{\circ}\).
Chứng minh: \(Q , H , M\) thẳng hàng
Vì \(Q \in \left(\right. O \left.\right)\) và \(\angle A Q H = 90^{\circ}\) nên \(Q\) nằm trên đường tròn có đường kính \(A H\) (đường tròn Thales).
Khi đó tam giác \(A Q H\) vuông tại \(Q\).
Ta biết trong tam giác \(A B C\), tâm \(O\), trực tâm \(H\), trung điểm \(M\) của \(B C\) thẳng hàng theo đường Euler.
Mà đường tròn đường kính \(A H\) cắt lại đường tròn ngoại tiếp \(\left(\right. O \left.\right)\) tại điểm \(Q\), ứng với phản chiếu của \(A\) qua trung điểm \(B C\).
→ Do đó \(Q\) chính là hình chiếu của \(A\) lên đường trung bình song song với \(B C\).
⇒ \(Q , H , M\) thẳng hàng.

bạn tự kẻ hình nha
a) Xét (o) có SB và SC là hai tiếp tuyến
=> góc SBO = góc SCO = 90độ
=> góc SOC + góc SOB = 90 độ +90độ = 180 độ
Mà 2 góc này ở vị trí đối nhau của tg SBOC
=> tg SBOC nội tiếp

Mình chưa vẽ hình nhưng mà câu c bạn có sai không? Tại vì bạn ghi thế thì có khác gì chứng minh AK=AD đâu. Bạn xem lại nhá

Bài 1:
a: Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
Suy ra: \(\widehat{ABO}=\widehat{ACO}=90^0\)
hay AC là tiếp tuyến của (O)
b: Xét (O) có
OI là một phần đường kính
CE là dây
OI⊥CE tại I
Do đó: I là trung điểm của CE
Xét ΔDCE có
DI là đường cao
DI là đường trung tuyến
Do đó: ΔDCE cân tại D
Xét ΔOED và ΔOCD có
OE=OC
ED=CD
OD chung
Do đó: ΔOED=ΔOCD
Suy ra: \(\widehat{OED}=\widehat{OCD}=90^0\)
hay DE là tiếp tuyến của (O)
a) Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
nên BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
hay \(AE\cdot AC=AB\cdot AF\)