Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên nó là tam giác cân.
Vậy thì MA = ME. Lại có MA = MF nên ME = MF.
b) Do AME là tam giác cân, MH là đường cao nên MH cũng là phân giác.
Vậy thì \(\widehat{AMB}=\widehat{BME}\)
Mà \(\widehat{AMB}=\widehat{CMF}\Rightarrow\widehat{BME}=\widehat{CMF}\)
Xét tam giác BME và CMF có:
BM = CM
ME = MF
\(\widehat{BME}=\widehat{CMF}\)
\(\Rightarrow\Delta BME=\Delta CMF\left(c-g-c\right)\)
\(\Rightarrow BE=CF\)
c) Dễ thấy \(\Delta BMF=\Delta CMA\left(c-g-c\right)\Rightarrow\widehat{BFM}=\widehat{CAM}\)
Chúng lại ở vị trí so le trong nên AC//BF.
d) Xét tam giác AEF có MA = ME = MF nên AEF là tam giác vuông. Vậy \(AE\perp EF\)
Lại có \(AE\perp BC\Rightarrow\) BC//EF
![](https://rs.olm.vn/images/avt/0.png?1311)
M A B C N H F D
a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:
^AHB = ^DHB ( 1v )
HA = HD ( giả thiết )
MH chung
=> \(\Delta\)AHB = \(\Delta\)DHB ( c.g.c)
b) Từ (a) => ^ABH = ^DHB => BH là phân giác ^ABD
Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC
=> BC là phân giác ^ABD
c) NF vuông BC
AH vuông BC
=> NF // AH
=> ^NFM = ^HAM ( So le trong )
Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )
=> \(\Delta\)NFM = \(\Delta\)HAM ( g.c.g)
=> NF = AH ( 2)
Từ ( a) => AH = HD ( 3)
Từ (2) ; (3) => NF = HD
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét ΔMAB và ΔMEC có
MA=ME(gt)
ˆAMB=ˆEMCAMB^=EMC^(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔMAB=ΔMEC(c-g-c)