K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2018

Diem D la gi ban?

1 tháng 4 2018

a)Xét tam giác ABC và tam giác HAC có :

\(\widehat{BAC}=\widehat{AHC}\)

chung \(\widehat{BCA}\)

\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HAC (g-g)

\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)

\(\Leftrightarrow AH\times BC=AB\times AC\left(đpcm\right)\)

Giúp với Bài 1. Cho tam giác ABC nhọn (AB<AC) vẽ đường cao BD, CE a) Chứng minh tam giác ABD đồng dạng tam giác ACE b) Chứng minh tam giác ADE đồng dạng tam giác ABC c) Tia DE cắt CD tại i. Chứng minh iB.iC=iE.iD d) Gọi O là trung điểm BC. Chứng minh iD.iE=Oi^2 - OC^2 Bài 2. Cho tam giác ABC vuông tại A, kẻ đường cao AH a) Chứng minh tam giác ABC đồng dạng tam giác HBA từ đó suy ra AB^2=HB.HC b)...
Đọc tiếp

Giúp với
Bài 1. Cho tam giác ABC nhọn (AB<AC) vẽ đường cao BD, CE
a) Chứng minh tam giác ABD đồng dạng tam giác ACE
b) Chứng minh tam giác ADE đồng dạng tam giác ABC
c) Tia DE cắt CD tại i. Chứng minh iB.iC=iE.iD
d) Gọi O là trung điểm BC. Chứng minh iD.iE=Oi^2 - OC^2
Bài 2. Cho tam giác ABC vuông tại A, kẻ đường cao AH
a) Chứng minh tam giác ABC đồng dạng tam giác HBA từ đó suy ra AB^2=HB.HC
b) Chứng minh AH^2=HB.HC
c) kẻ HD vuông AC tại D. Đường trung tuyến CM của tam giác ABC cắt tại HD tại N. Chứng minh HN phần BM = CN phần CM và HN=DN
Bài 3. Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm, AH là đường cao. Tính BC, AH
Bài 4. Cho tam giác ABC (AB<AC), tia phân giác của góc A cắt cạnh BC tại D. Từ B kẻ BE vuông AD (E thuộc AD) , từ C kẻ CF vuông AD (F thuộc AD). Chứng minh :
a) tam giác ABE đồng dạng tam giác ACF
b) AB.AF = AC.AE
c) BE phần CF = DE phần DF
Bài 5. Cho tam giác ABC vuông tại A, lấy điểm D bất kì thuộc cạnh BC. Từ D kẻ đường thẳng vuông góc với AB tại E, vuông góc AC tại F
a) Chứng minh tam giác BED đồng dạng tam giác BAC
b) Chứng minh DB phần DC = FA phần FC
c) Trên tia đối của tia ED lấy điểm K sao cho EK=ED. Gọi H là giao điểm của KC và EF. Chứng minh tam giác HKE đồng dạng tam giác HCF
d) chứng minh DH//BK

0

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc CAE chung

Do đó: ΔABD\(\sim\)ΔACE
b: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có 

\(\widehat{EHB}=\widehat{DHC}\)

Do đó: ΔHEB đồng dạng với ΔHDC

SUy ra: HE/HD=HB/HC

hay \(HE\cdot HC=HD\cdot HB\)

22 tháng 10 2016

" phân giác BD " là phần bị thừa nha m.n

21 tháng 1 2018

Mình chỉ làm dược 3 câu thôi

 

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Qchứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)= \(\frac{1}{a}\)2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE3) cho tam giác ABC vuông...
Đọc tiếp

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Q

chứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)\(\frac{1}{a}\)

2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE

3) cho tam giác ABC vuông tại A, đường cao AH, phân giác góc ABC cắt đường cao AH tại E cắt AC tại D.

chứng minh rằng \(\frac{AE}{EH}=\frac{DC}{DA}\)

4) cho tam giác ABC, M là điểm thuộc cạnh BC. Chứng minh: AM.BC<AM.MC+AC.MB

5) cho tam giác ABC vuông tại A ( góc B lớn hơn góc C). lấy điểm D trên cạnh AC sao cho góc ABD bằng góc C.

chứng minh \(\frac{1}{BD^2}+\frac{1}{BC^2}=\frac{1}{AB^2}\)

giúp mình với :3. mình sắp thi rồi

p/s không biết làm bài nào chứ không phải lười đâu :((

0

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có

\(\widehat{A}\) chung

Do đó: ΔABD\(\sim\)ΔACE(g-g)

b) Xét ΔEGB vuông tại E và ΔDGC vuông tại D có

\(\widehat{EGB}=\widehat{DGC}\)(hai góc đối đỉnh)

Do đó: ΔEGB\(\sim\)ΔDGC(g-g)

\(\frac{GB}{GC}=\frac{GE}{GD}=k\)

hay \(GC\cdot GE=GB\cdot GD\)(đpcm)