Cho tam giác nhọn ABC đường cao BH; có N là trung điểm BC, M là trung điểm của HC, D  là điểm đối x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2014

2/. Tam giác AKC có

          CH là đường cao

         AE là đường cao

         Ch cắt AE tại E

Nên E là trực tâm của tam giác AKC

20 tháng 12 2014

3/. Ta có góc HAC + góc HCA = 90 độ

     Ta có góc IEC + góc ECI = 90 độ => góc ICE + góc HCA = 90 độ

 => góc HAC = góc IEC                                                                                  (1)

Ta có IH = AH (tam giác AIK vuông tại I, HI là trung tuyến)

         => tam giác AHI cân tại H => góc HAI = góc HIA => góc HAC = góc HIA  (2)

Ta có IM = MẸ (tam giác EIC vuông tại I, IM là trung tuyến

         => tam giác EMI cân tại M => góc IEM = góc MIE => góc IEC = góc MIE (3)

Từ (1)(2)(3) ta suy ra góc HIA = góc MIE    (4)

Ta có góc HIA + góc HIE = 90 độ(5)

         góc HIE + góc EIM = 90 độ(6)

Từ (4)(5)(6) ta suy ra góc HIE + góc EIM = 90 độ => HI vuông góc với IM

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

b: Xét ΔAED có AH/AE=AM/AD

nên HM//ED

=>ED//CB

Xet ΔCAE có

CH vừa là đường cao, vừa là trung tuyến

=>ΔCAE can tại C

=>CA=CE=BD

Vì BC//ED và BD=CE
nên BCDE là hình thang cân

c: Xét tứ giác AHCK có

N là trung điểm chung của AC và HK

góc AHC=90 độ

=>AHCK là hình chữ nhật

15 tháng 1 2019

điểm M để làm gì vậy

15 tháng 1 2019

câu a thì dễ mà caaub vẽ thế nào cx ko là giao ba đường đấy