Cho tam giác nhọn ABC có đường trung tuyến AM. Trên tia đối của tia...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

12 tháng 12 2016

Vẽ hình: (các đoạn thẳng bằng nhau đã kí hiệu trong hình)

A B C D M H X a) Xét ΔABM và ΔDCM có:

AM = MD (gt)

AM = BM (M là trung điểm của BC)

Góc AMB = Góc CMD (đối đỉnh)

=> ΔABM = ΔDCM (c.g.c) (đpcm)

b) Vì ΔABM = ΔDCM (cmt) => Góc BAM = góc CDM (2 góc tương ứng)

Góc BAM = góc CDM mà 2 góc này ở vị trí so le trong => AB//CD (đpcm)

c) Vì Ax//BC => Góc ACB = góc CAH (2 góc so le trong)

Xét ΔABC và ΔAHC có:

AH = BC (gt)

Góc ACB = góc CAH (cmt)

Cạnh chung AC

=> ΔABC = ΔAHC (c.g.c)

Vì ΔABC = ΔAHC => Góc ACH = góc BAC (2 góc tương ứng)

Vì Góc ACH = góc BAC mà 2 góc này ở vị trí so le trong => CH//AB

Vì DC//AB và CH//AB mà 2 cạnh này cùng đi qua điểm C => DC trùng CH (tiên đề Ơ-clit về đường thẳng song song)

Vì DC trùng CH => 3 điểm H, C, D thẳng hàng (đpcm)

21 tháng 6 2020

tự kẻ hình nha

a) xét tam giác BMD và tam giác CMA có

 AM=MD(gt)

BM=CM(gt)

AMC=BMD( đối đỉnh)

=> tam giác BMD= tam giác CMA(cgc)

=> BDM=MAC( hai góc tương ứng)

mà BDM so le trong với MAC=> AC//BD, BA vuông góc với AC=> BA vuông góc với BD=> ABD=90 độ

b) từ tam giác BMD= tam giác CMA=> BD=AC( hai cạnh tương ứng)

xét tam giác ABC và tam giác BAD có

BD=AC(cmt)

AB chung

BAC=ABD(=90 độ)

=> tam giác ABC= tam giác BAD(cgc)

c) từ tam giác ABC= tam giác BAD => AD=BC( hai cạnh tương ứng)

mà AM=MD=> M là trung điểm của AD 

và M là trung điểm của BC=> AM=MD=BM=CM

=> 2AM=BM+CM

=> 2AM=BC

=> AM=1/2BC

22 tháng 12 2017

a b c m d 1 2 3 4 e f

Xét T/G ABC và DCM 

CÓ ; M1=M2 ( đối đỉnh) CM=BM (M là trung điểm BC) AM=MD (gt) -> ABC=DCM(CgC)

Có T/G ABC=DCM ->  Góc D=BAM(2 góc tương ứng )mà 2 góc Sole trong -> AB//DC

C) Xét T/G BFM và CEM  có CM=MB(GT) E3=F4=90 độ M4=M3 ( đối đỉnh) ->  BFM=CEM(g.c.g)

-> ME=MF ->  M là trung điểm EF 

22 tháng 12 2017

A B C M D E F

a, Xét t/g ABM và t/g DCM có:

AM=DM(gt)

BM=CM(gt)

góc AMB=góc DMC (đối đỉnh)

=>t/g ABM=t/g DCM (c.g.c)

b, Vì t/g ABM=t/g DCM (cmt) => góc ABM = góc DCM (2 góc t/ứ)

Mà 2 góc này là cặp góc so le trong

=> AB//DC

c, Xét t/g BEM và t/g CFM có:

góc BEM = góc CFM = 90 độ (gt)

BM=CN(gt)

góc BME = góc CMF (đối đỉnh)

=>t/g BEM = t/g CFM (cạnh huyền - góc nhọn)

=>EM=FM (2 cạnh t/ứ)

=>M là trung điểm của EF

28 tháng 1 2019

tu ve hinh :

a, xet tamgiac MBA va tamgiac MDC co :

goc BMA = goc DMC (doi dinh)

BM = CM do M la trung diem cua BC (GT)

MA = MD (GT)

=> tamgiac MBA = tamgiac MDC (c - g - c)

=> AB = DC (dn) 

tamgiac MBA = tamgiac MDC => goc CDM = goc MAB ma 2 goc nay slt

=> AB // CD (dh)

b, co tamgiac ABC vuong tai A => AB | AC (dn) ; AB // DC (cau a)

=> AC | DC (dl) => tamgiac ACD vuong tai C (dn) 

tamgiac MBA = tamgiac MDC => AB = CD (dn)

goc BAC = goc DCA = 90o do tamgiac ABC vuong tai A va tamgiac DCA vuong tai C

xet tamgiac ACB va tamgiac CAD co AC chung

=> tamgiac ACB = tamgiac CAD (2cgv)

=> BC = AD (dn)

M la trung diem cua BC => M la trung diem cua AD => AM = AD/2 (tc)

=> AM = BC/2

22 tháng 12 2016

câu a hơi kì nhỉ , theo mk thì phải là tam giác ABM = tam giác DCM chứ

22 tháng 12 2016

a) Xét \(\Delta ABM\)\(\Delta DCM\)có :

AM=DM ( gt )

BM=MC ( gt )

\(\widehat{BMA}=\widehat{DMC}\) ( 2 góc đối đỉnh )

do đó \(\Delta ABM\) = \(\Delta DCM\) ( c.g.c )

b) Vì \(\Delta ABM=\Delta DCM\)( c/m trên )

\(\Rightarrow\widehat{ABM}=\widehat{DCM}\) ( 2 góc tương ứng )

mà 2 góc này ở vị trí so le trong

nên AB // BC

 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

DO đó:ΔAMB=ΔDMC

b: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AC//BD