\(BAC=60\) độ, chứng minh \(BC^2=AB^2+AC^2-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2022

Vì \(BAC=60^o\Rightarrow ABH=30^o\Rightarrow AH=\dfrac{AB}{2}\left(1\right)\)

Áp dụng định lý Pytago ta có:

\(AB^2=AH^2+BH^2\) và \(BC^2=BH^2+HC^2\)

\(\Rightarrow BC^2=AB^2-AH^2+AC^2-2.AC.AH+AH^2\)

\(\Rightarrow BC^2=AB^2+AC^2-2AH.AC\left(2\right)\)

Từ (1) và (2) \(\Rightarrowđfcm\)

25 tháng 5 2022

ũa cái đề sai mè vẫn làm đc hẻ?

15 tháng 3 2019

A B C H 60

Kẻ BH vuông AC tại H

Ta có:

Tam giác BHC vuông tại H

Áp dụng định lí Pitago: \(BC^2=BH^2+HC^2\)

tam giác ABH vuông tại H nên ta suy ra: \(BH^2=AB^2-AH^2\)

và \(HC^2=\left(AC-AH\right)^2=AC^2-2AC.AH+AH^2\)

Vậy \(BC^2=AB^2-AH^2+AC^2-2AC.AH+AH^2=AB^2+AC^2-2AC.AH\)

Xét tam giác vuông AHB tại H có góc A =60 độ => góc B bằng 30 độ

Áp dụng định lí trong một tam giác vuông cạnh đối diện với góc 30 độ bằng một nửa cạnh huyền

nên ta có: \(AH=\frac{1}{2}AB\)hay 2AH=AB

Thay vào ta suy ra đc điều phải chứng minh

15 tháng 3 2019

A B C H

Kẻ \(CH\perp AB\left(H\in AB\right)\)

Ta có:Xét \(\Delta AHC\) có:\(\widehat{CHA}=90^0,\widehat{HAC}=60^0\Rightarrow\widehat{ACH}=30^0\)

\(\Rightarrow AH=\frac{AC}{2}\)(Theo tính chất cạnh đối diện với góc 30 độ bằng một nửa cạnh huyền)

\(\Rightarrow HB=AB-HA=AB-\frac{AC}{2}\)

Xét \(\Delta HAC\) có:\(AC^2=HA^2+HC^2\Rightarrow HC^2=AC^2-AH^2=AC^2-\left(\frac{AC}{2}\right)^2=\frac{3}{4}AC^2\)(Theo định lý Pythagore)

Xét \(\Delta BCH\) có:\(BC^2=BH^2+CH^2=\left(AB-\frac{AC}{2}\right)^2+\frac{3}{4}AC^2\)

\(=\left(AB-\frac{AC}{2}\right)\left(AB-\frac{AC}{2}\right)+\frac{3}{4}AC^2\)

\(=AB\left(AB-\frac{AC}{2}\right)-\frac{AC}{2}\left(AB-\frac{AC}{2}\right)+\frac{3}{4}AC^2\)

\(=AB^2-AB\cdot AC+\frac{AC^2}{4}+\frac{3}{4}AC^2\)

\(=AB^2-AB\cdot AC+AC^2\left(đpcm\right)\)

22 tháng 3 2020

A B C H

kẻ BH _|_ AC

xét tam giác ABH vuông tại H => ^ABH + ^BAH = 90 (đl)

^BAH = 60 (Gt)

=> ^ABH = 30; xét tam giác ABH vuông tại H

=> AH = AB/2 (đl)

=> AB = 2AH                  (1)

Tam giác ABH vuông tại H => HA^2 + HB^2 = AB^2 (pytago)

=> BH^2 = AB^2 - AH^2         (2)

xét tam giác BHC vuông tại H => BC^2 = HB^2 + HC^2 (pytago)

có HC = AC - AH

=> BC^2 = HB^2 + (AC - AH)^2 

=> BC^2 = HB^2 + AC^2 - 2AH.AC + AH^2 và (1)(2)

=> BC^2 = AB^2 - AH^2 + AC^2 - AB.AC + AH^2

=> BC^2 = AB^2 + AC^2 - AB.AC

https://hoc24.vn/hoi-dap/question/858344.html

24 tháng 3 2020

bạn tham khảo ở đây Kết quả tìm kiếm | Học trực tuyến

I ) Cho tam giác ABC vuông tại A có AB=3cm; AC=4cma) Tính độ dài BCb) Kẻ Bm là tia p.g của \(\widehat{ABC}\left(M\in AC\right),MH⊥BC\left(H\in BC\right)\)Chứng minh \(\Delta BMA=\Delta BMH\)c) Chứng minh AM<MCd) Trên tia đối của tia AB lấy N sao cho AN=CH. Chứng minh 3 điểm N,M,H thẳng hàngII ) Cho tam giác ABC có AB=3cm; AC=4cm: BC=5cm. Kẻ đường cao AH \(\left(H\in BC\right)\)1) Chứng tỏ tam giác ABC là tam giác vuông2) Trên cạnh BC...
Đọc tiếp

I ) Cho tam giác ABC vuông tại A có AB=3cm; AC=4cm

a) Tính độ dài BC

b) Kẻ Bm là tia p.g của \(\widehat{ABC}\left(M\in AC\right),MH⊥BC\left(H\in BC\right)\)Chứng minh \(\Delta BMA=\Delta BMH\)

c) Chứng minh AM<MC

d) Trên tia đối của tia AB lấy N sao cho AN=CH. Chứng minh 3 điểm N,M,H thẳng hàng

II ) Cho tam giác ABC có AB=3cm; AC=4cm: BC=5cm. Kẻ đường cao AH \(\left(H\in BC\right)\)

1) Chứng tỏ tam giác ABC là tam giác vuông

2) Trên cạnh BC lấy D sao cho BD=BA, trên cạnh AC lấy E sao AE=AH. Gọi F là giao điểm của DE và AH, Chứng minh

a) \(DE⊥AC\)

b) \(\Delta ACF\)cân

c) \(BC+AH>AC+AB\)

III ) Cho tam giác ABC vuôg tại B có \(\widehat{BAC=60^o}\).Vẽ tia p.g AD của \(\widehat{BAC}\left(D\in BC\right)\)từ D vẽ \(DE⊥AC\left(E\in AC\right)\). Chứng minh rằng

a) \(AB=AE\)

b) \(AD⊥BE\)

c) \(DC>AB\)

                                    GIÚP MÌNK NHA!!!!!!!!!

 

0
13 tháng 11 2020

Định lí hàm số côsin

4 tháng 11 2019

a/ tam giác BAH và tam giác CAH có 

AB=AC ( tam giác ABC cân vì góc B = góc C)

góc BHA = góc CHA = 90 độ

góc B = góc C

=> tam giác BAH = tam giác CAH (CH - GN)

=>góc BAH = góc HAC