Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H 60
Kẻ BH vuông AC tại H
Ta có:
Tam giác BHC vuông tại H
Áp dụng định lí Pitago: \(BC^2=BH^2+HC^2\)
tam giác ABH vuông tại H nên ta suy ra: \(BH^2=AB^2-AH^2\)
và \(HC^2=\left(AC-AH\right)^2=AC^2-2AC.AH+AH^2\)
Vậy \(BC^2=AB^2-AH^2+AC^2-2AC.AH+AH^2=AB^2+AC^2-2AC.AH\)
Xét tam giác vuông AHB tại H có góc A =60 độ => góc B bằng 30 độ
Áp dụng định lí trong một tam giác vuông cạnh đối diện với góc 30 độ bằng một nửa cạnh huyền
nên ta có: \(AH=\frac{1}{2}AB\)hay 2AH=AB
Thay vào ta suy ra đc điều phải chứng minh
A B C H
Kẻ \(CH\perp AB\left(H\in AB\right)\)
Ta có:Xét \(\Delta AHC\) có:\(\widehat{CHA}=90^0,\widehat{HAC}=60^0\Rightarrow\widehat{ACH}=30^0\)
\(\Rightarrow AH=\frac{AC}{2}\)(Theo tính chất cạnh đối diện với góc 30 độ bằng một nửa cạnh huyền)
\(\Rightarrow HB=AB-HA=AB-\frac{AC}{2}\)
Xét \(\Delta HAC\) có:\(AC^2=HA^2+HC^2\Rightarrow HC^2=AC^2-AH^2=AC^2-\left(\frac{AC}{2}\right)^2=\frac{3}{4}AC^2\)(Theo định lý Pythagore)
Xét \(\Delta BCH\) có:\(BC^2=BH^2+CH^2=\left(AB-\frac{AC}{2}\right)^2+\frac{3}{4}AC^2\)
\(=\left(AB-\frac{AC}{2}\right)\left(AB-\frac{AC}{2}\right)+\frac{3}{4}AC^2\)
\(=AB\left(AB-\frac{AC}{2}\right)-\frac{AC}{2}\left(AB-\frac{AC}{2}\right)+\frac{3}{4}AC^2\)
\(=AB^2-AB\cdot AC+\frac{AC^2}{4}+\frac{3}{4}AC^2\)
\(=AB^2-AB\cdot AC+AC^2\left(đpcm\right)\)
A B C H
kẻ BH _|_ AC
xét tam giác ABH vuông tại H => ^ABH + ^BAH = 90 (đl)
^BAH = 60 (Gt)
=> ^ABH = 30; xét tam giác ABH vuông tại H
=> AH = AB/2 (đl)
=> AB = 2AH (1)
Tam giác ABH vuông tại H => HA^2 + HB^2 = AB^2 (pytago)
=> BH^2 = AB^2 - AH^2 (2)
xét tam giác BHC vuông tại H => BC^2 = HB^2 + HC^2 (pytago)
có HC = AC - AH
=> BC^2 = HB^2 + (AC - AH)^2
=> BC^2 = HB^2 + AC^2 - 2AH.AC + AH^2 và (1)(2)
=> BC^2 = AB^2 - AH^2 + AC^2 - AB.AC + AH^2
=> BC^2 = AB^2 + AC^2 - AB.AC
a/ tam giác BAH và tam giác CAH có
AB=AC ( tam giác ABC cân vì góc B = góc C)
góc BHA = góc CHA = 90 độ
góc B = góc C
=> tam giác BAH = tam giác CAH (CH - GN)
=>góc BAH = góc HAC
Vì \(BAC=60^o\Rightarrow ABH=30^o\Rightarrow AH=\dfrac{AB}{2}\left(1\right)\)
Áp dụng định lý Pytago ta có:
\(AB^2=AH^2+BH^2\) và \(BC^2=BH^2+HC^2\)
\(\Rightarrow BC^2=AB^2-AH^2+AC^2-2.AC.AH+AH^2\)
\(\Rightarrow BC^2=AB^2+AC^2-2AH.AC\left(2\right)\)
Từ (1) và (2) \(\Rightarrowđfcm\)
ũa cái đề sai mè vẫn làm đc hẻ?