K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2017

Dựng đường cao BH.

Xét tam giác vuông CHB ta có .\(BC^2=BH^2+HC^2=BH^2+\left(AC-AH\right)^2\)

\(=BH^2+AH^2+AC^2-2AC.AH\)

Ta có \(AH=CB.\cos A\)

suy ra \(BC^2=BH^2+AH^2+AC^2-2AC.CB.\cos A\)

Hay \(BC^2=BA^2+AC^2-2AC.BC.\cos A\)

\(\Leftrightarrow a^2=b^2+c^2-2bc\cos A\)

28 tháng 7 2017

Đây là định lí cosin trong tam giác có học ở lớp 10, và nó đúng cho mọi tam giác. bạn ghi thêm điều kiện ABC là tam giác nhọn, tôi nghỉ là bạn học dưới lớp 10. dù sao tôi vẫn giải theo 2 cách như sau: 
*cách1:ta kí hiệu vecto AB là: vAB. ta có: 
(vBC)^2=(vAC-vAB)^2 => 
BC^2=AC^2+AB^2-2*vAC*vAB 
a^2=b^2+c^2-2*bc*cosA (đpcm) 
trong phần trên ta dùng công thức tích vô hướng của 2 vecto: 
vAC*vAB=AC*AB*cosA. 
và nhớ thêm bình phương của vecto bằng bình phương độ dài. 
*cách2: dựng đường cao BH, vì ABC là tam giác nhọn nên H nằm trên đoạn AC, tức là HC+AH=AC. 
áp dụng định lí pitago ta có: 
BC^2=BH^2+HC^2 
=AB^2-AH^2+HC^2 
=AB^2+(HC+AH)(HC-AH) 
=AB^2+AC(HC-AH).(1) 
ta có: 
HC-AH=HC+AH-2AH 
=AC-2AH 
=AC-2*AB*cosA 
thay vào (1), và thay các độ dài ta có: 
a^2=c^2+b(b-2c*cosA) 
=c^2+b^2-2bc*cosA.

28 tháng 7 2017

a=120 nha cac ban minh ghi lon

25 tháng 8 2017

Góc B bao nhiêu độ

6 tháng 10 2017

Ta có hình vẽ như sau:

Trong tam giác vuông ACH có:

AC2=AH2+HC2=AH2+(BC-BH)2=AH2+BC2+BH2-2BCBH

Trong tam giác vuông ABH có:

AH2+BH2=AB2 và BH=AB. cosB hay BH=c.cosB=> ĐPCM


A B C H

27 tháng 5 2019

kẻ đường cao AH

Ta có: BH=HC=\(\frac{BC}{2}=\frac{c}{2}\)\(\frac{ }{ }\)

theo hệ thức lượng trong tam giác vuông ta có: \(AH^2=BH.HC=>AH=\sqrt{\frac{c}{2}.\frac{c}{2}}=\frac{c^2}{4}\)

diện tích tam giác ABC = \(\frac{1}{2}.AH.BC=\frac{1}{2}.\frac{c^2}{4}.c=\frac{c}{8}\)

vậy diện tích tam giác ABC = \(\frac{c}{8}\)


C

1/cho tam giac ABC can tai A ( goc A<900) cac duong cao AD va BE cat nhau tai H ( D thuoc BC, E thuoc AC) a/CM tu giac DHEC noi tiep duong tron b/chung minh ED=BD va goc HBD=goc HCDc/Goi O la tam cua duong tron ngoai tiep tam giac AHE.CM rang ED la tiep tuyen cua duong tron (O)2/cho ram giac ABC co ba goc nhon noi tiep duong tron (O).Hai duong cao AD va BJ cat nhau tai Ha/CM;tu giac CDHK noi tiep b/ve d.kinh AF .tia AD cat (O)tai E.CM BC//EFc/CMR; AD/HD=BD.CDb/goi I la trung diem cua BC...
Đọc tiếp

1/cho tam giac ABC can tai A ( goc A<900) cac duong cao AD va BE cat nhau tai H ( D thuoc BC, E thuoc AC) 

a/CM tu giac DHEC noi tiep duong tron 

b/chung minh ED=BD va goc HBD=goc HCD

c/Goi O la tam cua duong tron ngoai tiep tam giac AHE.CM rang ED la tiep tuyen cua duong tron (O)

2/cho ram giac ABC co ba goc nhon noi tiep duong tron (O).Hai duong cao AD va BJ cat nhau tai H

a/CM;tu giac CDHK noi tiep 

b/ve d.kinh AF .tia AD cat (O)tai E.CM BC//EF

c/CMR; AD/HD=BD.CD

b/goi I la trung diem cua BC .CMR: H,I,F thang hang

3/cho tam giac nhon  ABC noi tiep duong tron tam O,duong cao BHva CK lan luot cat duong tron tai Eva F

a.CMR: tu giac BKHC noi tiep 

b.CM: A la diem chinh giua cu cung EF 

c.CM:OA//EF

d.CM:EF//HK

4/cho tam giac ABC vuong tai A co AB<AC.Ke duong cao AH.Tren HC lay diem D sao cho HD=Hb

a/CMR:tap giac ABD can

b/Tu C ke CF vuong goc voi AD keo dai tai E

Chung minh tu giac AHEC noi tiep duoc trong 1 duong tron .Xac dinh tam O cua duong tron nay

c/CM:AB.ED=HB.CD 

 

0
7 tháng 2 2018

a) Do \(\widehat{BEC};\widehat{BDC}\) là các góc nội tiếp chắn nửa đường tròn nên \(\widehat{BEC}=\widehat{BDC}=90^o\Rightarrow\widehat{AEH}=\widehat{ADH}=90^o\)

Hai tam giác vuông AEH và ADH có chung cạnh huyền AH nên A, E, D, H cùng thuộc đường tròn đường kính AH.

Vậy ADHE là tứ giác nội tiếp.

Xét tam giác ABC có BD, CE là các đường cao nên H là trực tam. Vậy thì \(AI\perp BC\)

Hai tam giác vuông ABD và AIB có chung cạnh huyền AB nên A, D, I, B cùng thuộc đường tròn đường kính AB.

Vậy ADIB là tứ giác nội tiếp.

b) Ta có \(\Delta AHD\sim\Delta ACI\left(g-g\right)\Rightarrow\frac{AH}{AC}=\frac{AD}{AI}\Rightarrow AH.AI=AD.AC\)

\(\Delta AHE\sim\Delta ABI\left(g-g\right)\Rightarrow\frac{AH}{AB}=\frac{AE}{AI}\Rightarrow AH.AI=AB.AE\)

Vậy nên \(AB.AE=AH.AI=AD.AC\)

c) Tứ giác AION nội tiếp nên \(\widehat{AIN}=\widehat{AON}=\widehat{ANM}\)

Ta cùng có \(\Delta ADN\sim\Delta ANC\Rightarrow\frac{AD}{AN}=\frac{AN}{AC}\Rightarrow AN^2=AD.AC\)

Mà AD.AD = AH.AI nên AH.AI = AN2

\(\Rightarrow\Delta AHN\sim\Delta ANI\left(c-g-c\right)\)

\(\Rightarrow\widehat{ANH}=\widehat{AIN}=\widehat{ANM}\)

Vậy nên M, K , N thẳng hàng.