Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)cm tam giác AFC đồng dạng tam giác AEB(gg)
=> tam giác AFE đồng dạng ACB(cgc) . từ đó suy ra đpcm
b) tam giác BDH đồng dạng tam giác BEC (gg)
=> BH/BC =BD/BE hay BH .BE =BD.BC (1)
t^2 CH.CF=DC.BC (2)
lấy (1)+(2) theo vế suy ra đpcm
c)tam giác AFE đd tam giác ACB ( câu a) => góc AEF = góc C
t^2 tam giác DEC đd tam giác ABC => góc DEC= góc C
Do đó góc AEF= góc DEC
mà góc AEF+góc FEB=90 ; góc DEC+BED =90
=> góc FEB= góc BED
suy ra đpcm ................... (x-x)
a) xét tam giác ABD và tam giác AHF có
góc BAD chung
Góc AFH = góc ADB (=90 độ)
=> tam giác ABD đồng dạng vs tam giác AHF (g.g)
=> AB/AD = AH/AF
=> AF.AD = AH.AD
b) xét tam giác AFC và tam giác AEB có
Góc A chung
Góc AFC = góc AEB (=90 độ)
=> tam giác AFC đồng vs tam giác AEB (g.g)
=> AF/AC = AE/AB
=> AF.AB= AE.AC
a: Xét ΔABD vuông tại D và ΔAHF vuông tại F có
góc FAH chung
=>ΔABD đồng dạng với ΔAHF
=>AB/AH=AD/AF
=>AB*AF=AH*AD
b: Xet ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
=>AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC
c:góc FEC=góc DAC
góc DFC=góc EBC
mà góc DAC=góc EBC
nên góc FEC=goc DFC
=>FC là phân giác của góc EFD
A B C F E K H
a) Xét tam giác AFC và tam giác AEB có:
^A chung
^F vuông góc ^E
Vậy: tam giác AFC đồng dạng tam giác AEB (g.g)
vì tam giác AFC đồng dạng tam giác AEB (cmt) nên:
=> AF/AC = AE/AB
=> AE.AC = AF.AB (đpcm)
b) từ H kẻ HK vuông góc BC
+) xét tam giác BKH và tam giác BEC có:
^HBC chung
^BKH = ^BEC (= 90 độ)
vậy: tam giác BKH đồng dạng tam giác BEC (g.g)
=> BK/BH = BE/BC
=> BH.BE = BK.BC (1)
+) xét tam giác CKH và tam giác CFB:
^BHC chung
^CKH = ^CFB (= 90 độ)
vậy: tam giác CKH đồng dạng tam giác CFB
=> CK/CH = CF/CB
=> CH.CF = BC.CK (2)
Từ (1) và (2) ta có:
BH.BE + CH.CF = BK.BC + CK.BC
= BC.(BK + CK)
= BC.BC
= BC^2
=> BH.BE + CH.CF = BC^2 (đcpm)
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{EAF}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc CAF chung
Do đó: ΔAEB\(\sim\)ΔAFC
Suy ra: AE/AF=AB/AC
hay AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
Do đó: ΔAEF\(\sim\)ΔABC
Suy ra: \(\widehat{AEF}=\widehat{ABC}\)
b: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
góc DBH chung
DO đo: ΔBDH\(\sim\)ΔBEC
Suy ra: BD/BE=BH/BC
hay \(BD\cdot BC=BH\cdot BE\)
Xét ΔCDH vuong tại D và ΔCFB vuông tại F có
gsoc FCB chung
Do đo: ΔCDH\(\sim\)ΔCFB
Suy ra: CD/CF=CH/CB
hay \(CD\cdot CB=CH\cdot CF\)
\(BH\cdot BE+CH\cdot CF=CD\cdot CB+BD\cdot CB=BC^2\)
Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618
Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618