Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi giao điểm của BM với AC; CM với AD lần lượt là D và E
Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó;ΔEBC=ΔDCB
Suy ra: \(\widehat{MCB}=\widehat{MBC}\)
hay ΔMBC cân tại M
=>\(\widehat{MBC}=\dfrac{180^0-140^0}{2}=20^0\)
=>\(\widehat{ACB}=\widehat{ABC}=70^0\)
hay \(\widehat{BAC}=40^0\)

+) Xét tam giác vuông BKM có ∠BMC là góc ngoài tam giác tại đỉnh M nên:

Hướng dẫn:
Xét hai tam giác vuông EBC và FCB có:
BC (cạnh huyền chung)
BE = CF (giả thiết)
Vậy ∆EBC = ∆FCB (cạnh huyền cạnh góc vuông)
=> \(\widehat{FBC}=\widehat{ECB}\)
hay ∆ABC cân tại A
+ Nếu tam giác có ba đường cao bằng nhau, tương tự như chứng minh trên, ta chứng minh được ba góc của chúng bằng nhau, suy ra đó là tam giác đều.
Bạn Thien Tu Borum làm nhanh vô rồi sai hình thức rồi kìa

Vẽ BH⊥ACvà CK⊥AB
Xét hai tam giác vuông KBC và HCB có:
Cạnh BC chung
BH=CK(gt)
⇒ΔKBC=ΔHCB
⇒KBCˆ=HCBˆ
Xét tam giác ABC, có:
KBCˆ=HCBˆ hay ABCˆ=ACBˆ
Vậy tam giác ABC cân tại A (đpcm)
Ba đường cao bằng nhau
Từ a) ta có:
Nếu BH = CK thì ΔABC cân tại A => AB = AC (1)
Nếu AI = BH thì ΔABC cân tại C => CA = CB (2)
Từ (1) và (2) ta có: AB = BC = AC
Vậy ΔABC là tam giác đều.
Xét hai tam giác vuông EBC và FCB có:
BC (cạnh huyền chung)
BE = CF
Vậy ∆EBC = ∆FCB (cạnh huyền cạnh góc vuông)
\(\Rightarrow\widehat{FBC}=\widehat{ECB}\)
hay ∆ABC cân tại A
+ Nếu tam giác có ba đường cao bằng nhau, tương tự như chứng minh trên, ta chứng
minh được đó là tam giác đều.

a) Ta có góc ở đáy của tam giác cân bằng 50 độ. Do đó tổng của hai góc đáy của tam giác cân bằng 50.2=100độ. Góc ở đỉnh bằng 180-100=80 độ
b) Ta có góc đỉnh của tam giác câ là 70 độ. Do đó mỗi góc ở đáy bằng (180-70):2=55 độ
c) góc B= góc C=(180-A):2
Gọi E là giao điểm của BM và AC, F là giao điểm của CM và AB
=>BM⊥AC tại E, CM⊥AB tại F
Xét ΔFBC vuông tại F và ΔECB vuông tại E có
BC chung
\(\hat{FBC}=\hat{ECB}\)
Do đó: ΔFBC=ΔECB
=>\(\hat{FCB}=\hat{EBC}\)
=>\(\hat{MBC}=\hat{MCB}\)
=>ΔMBC cân tại M
=>\(\hat{MBC}=\hat{MCB}=\frac{180^0-\hat{BMC}}{2}=\frac{180^0-140^0}{2}=20^0\)
ΔEBC vuông tại E
=>\(\hat{EBC}+\hat{ECB}=90^0\)
=>\(\hat{ECB}=90^0-20^0=70^0\)
ΔBAC cân tại A
=>\(\hat{BAC}=180^0-2\cdot\hat{ACB}=180^0-2\cdot70^0=40^0\)
Trong tam giác nhọn \(A B C\) cân tại đỉnh \(A\), hai đường cao xuất phát từ đỉnh \(B\) và \(C\) cắt nhau tại \(M\). Dựa vào thông tin bài toán, ta sẽ giải quyết bài toán như sau:
Bước 1: Tính chất của tam giác cân
Do tam giác \(A B C\) là tam giác cân tại đỉnh \(A\), ta có:
\(A B = A C\)
Điều này đồng nghĩa với việc hai góc \(\angle A B C = \angle A C B\).
Bước 2: Đặc điểm của hai đường cao
Khi ta có hai đường cao \(B M\) và \(C M\) trong tam giác \(A B C\), điểm \(M\) là trực tâm của tam giác. Do đó, các góc liên quan đến trực tâm sẽ có một số tính chất đặc biệt.
Bước 3: Góc tại điểm M
Tại điểm \(M\), các đường cao \(B M\) và \(C M\) tạo thành một góc \(\angle B M C\). Theo bài toán, ta biết rằng:
\(\angle B M C = 140^{\circ}\)
Góc \(\angle B M C\) được tạo thành giữa hai đường cao, và trong tam giác nhọn \(A B C\), góc này có mối quan hệ với các góc ở các đỉnh của tam giác. Đặc biệt, ta có công thức sau cho tam giác nhọn:
\(\angle B M C = 180^{\circ} - \angle A\)
Bước 4: Giải phương trình
Ta thay giá trị \(\angle B M C = 140^{\circ}\) vào công thức trên:
\(140^{\circ} = 180^{\circ} - \angle A\)
Giải phương trình:
\(\angle A = 180^{\circ} - 140^{\circ} = 40^{\circ}\)
Kết luận:
Góc \(A\) của tam giác \(A B C\) bằng \(\boxed{40^{\circ}}\).