\(\dfrac{KC}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2018

Akai Haruma giải giúp em câu a thôi được không ạ, em cảm ơn nhiều.

5 tháng 10 2019

tự vẽ hình nhé

AC2+BC2-AB2=AK2+KC2+BK2+KC2+2BK.CK-AK2-BK2

=2KC2+2BK.CK=2KC(KC+BK)

AB2+BC2-CA2=BK2+AK2+BK2+KC2+2BK.CK-AK2-KC2

2BK2+2BK.CK=2BK(BK+CK)

AC2+BC2-AB2/AB2+BC2-CA2=2KC(KC+BK)/2BK(BK+CK)
=KC/BK

23 tháng 2 2020

A B C E D H K

a/ Áp dụng định lý Pytago:

\(\frac{AC^2+CB^2-BA^2}{CB^2+BA^2-AC}=\frac{AK^2+KC^2+\left(BK^2++CK^2\right)-AB^2}{\left(BK+CK\right)^2+BA^2-\left(AK+KC\right)^2}\)

\(=\frac{2CK^2+2BK.CK}{2BK^2+2BK.CK}=\frac{2CK\left(CK+BK\right)}{2BK\left(BK+CK\right)}=\frac{CK}{BK}\)

b ) Ta có : 

\(\tan B=\frac{AK}{BK}\) ; \(\tan C=\frac{AK}{CK}\)

Nên \(\tan B.\tan C=\frac{AK^2}{BK.CK}\left(1\right)\)

Mặt khác ta có : \(B=HKC\)mà : \(tanHKC=\frac{KC}{KH}\)

Nên \(\tan B=\frac{KC}{KH}\)tương tự \(tanC=\frac{KB}{KH}\)

\(\Rightarrow\tan B.\tan C=\frac{KB.KC}{KH^2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left(\tan B.\tan C\right)^2=\left(\frac{AK}{KH}\right)^2\)

Theo bài ra có : \(HK=\frac{1}{3}AK\Rightarrow\tan B.\tan C=3\)

c ) c/ Ta chứng minh được: 2 tam giác ABC và ADE đồng dạng nên : 

\(\frac{S_{ABC}}{S_{ADE}}=\left(\frac{AB}{AD}\right)^2\left(3\right)\)

Mà góc BAC = 60 0 nên \(\widehat{ABD}=30^0\) 

\(\Rightarrow AB=2AD\left(4\right)\)

Từ (3) và (4 ) ta có : \(\frac{S_{ABC}}{S_{ADE}}=4\Rightarrow S_{ADE}=30\left(cm^2\right)\)

Chúc bạn học tốt !!!

a, Áp dụng định lí Pitago

\(\dfrac{AC^2+CB^2-BA^2}{CB^2+BA^2-AC^2}\\ =\dfrac{AK^2+KC^2+\left(BK+KC\right)^2-AB^2}{\left(BK+KC^2\right)+BA^2-\left(AK+KC\right)^2}\\ =\dfrac{2CK^2+2BK.CK}{2BK^2+2BK.Ck}\\ =\dfrac{2CK\left(CK+BK\right)}{2BK\left(BK+CK\right)}=\dfrac{CK}{BK}\) 

b, Ta có 

\(tanB=\dfrac{AK}{BK};tanC=\dfrac{AK}{CK}\\ Nên:tanBtanC=\dfrac{AK^2}{BK.CK}\left(1\right)\\ Mặt.khác.ta.có:\\ B=HKC\\ mà:tanHKc=\dfrac{KC}{KH}\\ Nên.tanB=\dfrac{KC}{KH}\\ Tương.tự.tanC=\dfrac{KB}{KH}\\ \Rightarrow tanB.tanC=\dfrac{KB.KC}{KH^2}\left(2\right)\) 

Từ (1) và (2)

 \(\Rightarrow\left(tanB.tanC\right)^2=\left(\dfrac{AK}{KH}\right)^2\\ Theo.GT:\\ HK=\dfrac{1}{3}AK\Rightarrow tanB.tanC=3\) 

c, Chứng minh được 

\(\Delta ABC.và.\Delta ADE.đồng.dạng\\ \Rightarrow\dfrac{S_{ABC}}{S_{ADE}}=\left(\dfrac{AB}{AD}\right)^2\left(3\right)\) 

 \(\widehat{BAC}=60^0\Rightarrow\widehat{ABD}=30^0\\\Rightarrow AB=2AD\left(4\right)\\ Từ.\left(3\right)và\left(4\right)=4\\ \Rightarrow S_{ADE}=30cm^2\)