\(a^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2016

Hỏi đáp Toán

31 tháng 7 2016

pn ơi lm hộ t nốt bài 2 câu b,c đc k

31 tháng 7 2016

Từ A vẽ AD _|_ BC ,AG là trung tuyến cắt BC tại E\(\Rightarrow\)\(\hept{\begin{cases}AD\le AE\Rightarrow\frac{1}{AD}\ge\frac{1}{AE}\\1.2GE=BC\left(do\Delta BGCvuongcoElatrungdiem\right)\end{cases}}\)

cotB=\(\frac{BD}{AD}\)cotC=\(\frac{CD}{AD}\)\(\Rightarrow\)2.cotB + cotC=\(\frac{BC}{AD}\)

3.G là trực tâm nên 3GE=AE\(\Rightarrow\)\(\frac{1}{AD}\ge\frac{1}{3GE}\)

từ 1, 2 và 3 \(\Rightarrow\)cotB + cotC=\(\frac{BC}{AD}\ge\frac{2GE}{3GE}=\frac{2}{3}\)

31 tháng 7 2016

\(\cot B+\cot C=\frac{BD}{AD}+\frac{CD}{AD}=\frac{BC}{AD}=\frac{BC}{3GH}\ge\frac{2GH}{3GH}=\frac{2}{3}\)
VỚI D LÀ CHÂN ĐƯỜNG CAO HẠ TỪ A XUÔNG BC , G LÀ TRỌNG TÂM , H LÀ CHÂN ĐƯỜNG CAO HẠ TỪ G XUỐNG BC
B2 THÌ GIẢI BÌNH THƯỜNG =='. ĐỌC THÊM NCPT 9 NHÉ 

24 tháng 7 2018

A B C c b a m D E F

a) Kẻ các đường cao \(AD;BE;CF\)

ta có : \(AD=AB.sinB\)\(AD=AC.sinC\)

\(\Rightarrow AB.sinB=AC.sinC\Leftrightarrow c.sinB=b.sinC\Leftrightarrow\dfrac{c}{sinC}=\dfrac{b}{sinB}\)

làm tương tự ta có : \(\dfrac{b}{sinB}=\dfrac{a}{sinA}\)\(\dfrac{a}{sinA}=\dfrac{c}{sinC}\)

\(\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\left(đpcm\right)\)

b) ta có : \(BC^2=BE^2+EC^2=AB^2-AE^2+\left(AC-AE\right)^2\)

\(\Leftrightarrow BC=AB^2-AE^2+AC^2-2AC.AE+AE^2\)

\(\Leftrightarrow BC^2=AB^2+AC^2-2AC.AB.cosA\)

\(\Leftrightarrow a^2=b^2+c^2-2bc.cosA\left(đpcm\right)\)

c) ta có : \(AB=BF+FA=BC.cosB+AC.cosA\)

\(\Leftrightarrow c=a.cosB+b.cosA\left(đpcm\right)\)

24 tháng 7 2018

đặc \(M\) là chân đường trung tuyên kẻ từ \(A\) \(\left(m_a\right)\)

ta có : \(AM^2=AB^2+BM^2-2AB.BM.cosB\)

\(\Leftrightarrow AM^2=AB^2+BM^2-2AB.BM\dfrac{AB^2+BC^2-AC^2}{2AB.2BM}\)

\(\Leftrightarrow AM^2=AB^2+\left(\dfrac{BC}{2}\right)^2-\dfrac{AB^2+BC^2-AC^2}{2}\)

\(\Leftrightarrow AM^2=AB^2-\dfrac{AB^2+BC^2-AC^2}{2}+\dfrac{BC^2}{4}\)

\(\Leftrightarrow AM^2=\dfrac{2AB^2-AB^2-BC^2+AC^2}{2}+\dfrac{BC^2}{4}\) \(\Leftrightarrow AM^2=\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{2}+\dfrac{BC^2}{4}\) \(\Leftrightarrow AM^2=\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}\Leftrightarrow m_a^2=\dfrac{c^2+b^2}{2}-\dfrac{a^2}{4}\left(đpcm\right)\)

(chú ý câu này sử dụng công thức ở câu \(b;c\) nha)

29 tháng 8 2016

dùng hlt trong tam giác 

30 tháng 8 2016

CÓ VỀ ĐỀ BÀI SAI Ở CHỖ ĐẲNG THỨC ! 

1 tháng 12 2017

a) Ta có \(AM=AC-MC=AC-MB=b-d\)

Xét tam giác vuông ABM, theo định lý Pi-ta-go ta có:

\(c^2+\left(b-d\right)^2=d^2\Leftrightarrow c^2+b^2-2bd+d^2=d^2\)

\(\Leftrightarrow c^2+b^2-2bd=0\)

Mà tam giác ABC vuông tại A nên \(b^2+c^2=a^2\)

\(\Rightarrow a^2=2bd\Rightarrow4bc=2bd\Rightarrow d=2c\left(đpcm\right)\)

b) Xét tam giác vuông ABM có \(BM=2BA\Rightarrow\widehat{ABM}=60^o\Rightarrow\widehat{AMB}=36^o\)

Xét tam giác cân MBC có \(\widehat{AMB}\) là góc ngoài tại đỉnh cân nên \(\widehat{AMB}=2\widehat{MBC}=2\widehat{MCB}\)

\(\Rightarrow\widehat{MCB}=\widehat{MBC}=\frac{30^o}{2}=15^o\)

Vậy nên \(\widehat{ABC}=\widehat{ABM}+\widehat{MBC}=60^o+15^o=75^o\)

\(\widehat{ACB}=\widehat{MCB}=15^o\)

23 tháng 2 2020

A B C E D H K

a/ Áp dụng định lý Pytago:

\(\frac{AC^2+CB^2-BA^2}{CB^2+BA^2-AC}=\frac{AK^2+KC^2+\left(BK^2++CK^2\right)-AB^2}{\left(BK+CK\right)^2+BA^2-\left(AK+KC\right)^2}\)

\(=\frac{2CK^2+2BK.CK}{2BK^2+2BK.CK}=\frac{2CK\left(CK+BK\right)}{2BK\left(BK+CK\right)}=\frac{CK}{BK}\)

b ) Ta có : 

\(\tan B=\frac{AK}{BK}\) ; \(\tan C=\frac{AK}{CK}\)

Nên \(\tan B.\tan C=\frac{AK^2}{BK.CK}\left(1\right)\)

Mặt khác ta có : \(B=HKC\)mà : \(tanHKC=\frac{KC}{KH}\)

Nên \(\tan B=\frac{KC}{KH}\)tương tự \(tanC=\frac{KB}{KH}\)

\(\Rightarrow\tan B.\tan C=\frac{KB.KC}{KH^2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left(\tan B.\tan C\right)^2=\left(\frac{AK}{KH}\right)^2\)

Theo bài ra có : \(HK=\frac{1}{3}AK\Rightarrow\tan B.\tan C=3\)

c ) c/ Ta chứng minh được: 2 tam giác ABC và ADE đồng dạng nên : 

\(\frac{S_{ABC}}{S_{ADE}}=\left(\frac{AB}{AD}\right)^2\left(3\right)\)

Mà góc BAC = 60 0 nên \(\widehat{ABD}=30^0\) 

\(\Rightarrow AB=2AD\left(4\right)\)

Từ (3) và (4 ) ta có : \(\frac{S_{ABC}}{S_{ADE}}=4\Rightarrow S_{ADE}=30\left(cm^2\right)\)

Chúc bạn học tốt !!!