\(\Delt...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2017

A B C E D

Xét tam giác BAD, ta có:

CosA= \(\dfrac{AD}{AB}\) (1)

Xét tam giác CAE, ta có:

CosA= \(\dfrac{AE}{AC}\) (2)

Từ (1) và (2) suy ra:

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\) (3)

Ta lại có: góc A : góc chung (4)

Từ (3) và (4) suy ra:

Tam giác ADE ∽ tam giác ABC


14 tháng 6 2019

A B C D E

\(\cos^2\widehat{A}=\frac{AE^2}{AC^2}=\frac{AD^2}{AB^2}\)

Xét tam giác ADE và tam giác ABC có : 

\(\frac{AD}{AB}=\frac{AE}{AC}\) \(\left(=\cos\widehat{A}\right)\)

\(\widehat{A}\) là góc chung 

Do đó : \(\Delta ADE~\Delta ABC\left(c-g-c\right)\)

Mà tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng nên 

\(\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=\left(\frac{AE}{AC}\right)^2=\cos^2\widehat{A}\)\(\Rightarrow\)\(S_{ADE}=S_{ABC}.\cos^2\widehat{A}\) ( đpcm ) 

làm tạm 1 câu :v 

14 tháng 6 2019

\(S_{ADE}+S_{BCDE}=S_{ABC}.1=S_{ABC}\left(\sin^2\widehat{A}+\cos^2\widehat{A}\right)\)

\(\Rightarrow\)\(S_{ADE}+S_{BCDE}=S_{ABC}.\sin^2\widehat{A}+S_{ABC}.\cos^2\widehat{A}\)

\(\Leftrightarrow\)\(S_{BCDE}=S_{ABC}.\sin^2\widehat{A}\) ( do \(S_{ADE}=S_{ABC}.\cos^2\widehat{A}\) ) 

24 tháng 2 2022

lkjytreedfyhgfdfgff

24 tháng 2 2022

lkjhgfgy6tyur65445676t 7 777676r64576556756777777777777/.,mnbvfggjhyjuhjtyj324345

Y
18 tháng 4 2019

a) + ΔADB ∼ ΔAEC ( g.g )

\(\Rightarrow\frac{AD}{AB}=\frac{AE}{AC}\Rightarrow\frac{AD}{AE}=\frac{AB}{AC}\)

+ ΔADE ∼ ΔABC ( c.g.c )

b) + AC // MH \(\Rightarrow\frac{AH}{AB}=\frac{MC}{CB}\)

+ AB // MK \(\Rightarrow\frac{CK}{AC}=\frac{MC}{CB}\)

\(\Rightarrow\frac{CK}{AC}-\frac{AH}{AB}=0\)

\(\Rightarrow\left(\frac{CK}{AC}+1\right)-\frac{AH}{AB}=1\)

\(\Rightarrow\frac{AK}{AC}-\frac{AH}{AB}=1\)

Bạn tử kẻ hình nhé .

a)\(\Delta ABD~\Delta ACE\left(g.g\right)\)

\(\Rightarrow\frac{AB}{AC}=\frac{AD}{AE}\)

\(\Rightarrow\Delta ADE~\Delta ABC\left(c.g.c\right)\)

\(\Rightarrow\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=cos^2\widehat{BAC}\)

\(\Rightarrow S_{ADE}=S_{ABC}.cos^2\widehat{BAC}\)

b)Ta có : \(S_{BCDE}=S_{ABC}-S_{ADE}=S_{ABC}-S_{ABC}.cos^2\widehat{BAC}=S_{ABC}\left(1-cos^2\widehat{BAC}\right)=S_{ABC}.sin^2\widehat{BAC}\)

3 tháng 4 2017

bn xem lạ đề dc o (ý c)

4 tháng 4 2017

đúng rồi mà pn

9 tháng 7 2017

A B C D E O H F

a) Tự chứng minh 

b) Diện tích của tứ giác có 2 đường chéo vuông góc với nhau là nửa tích 2 đường chéo.

Theo câu a, \(OA⊥EF\)nên \(S_{AEOF}=\frac{1}{2}OA.EF=\frac{1}{2}R.EF\)

tương tự:\(S_{BDOF}=\frac{1}{2}DF.OB=\frac{1}{2}R.DF\);\(S_{DOEC}=\frac{1}{2}.OC.DE=\frac{1}{2}R.DE\)

\(\Rightarrow S_{AEOF}+S_{BDOF}+S_{DOEC}=\frac{1}{2}R.P\)

hay \(S_{ABC}=\frac{1}{2}R.P=\frac{1}{4}.2RP\le\frac{R^2+P^2}{4}\)(Theo BĐT AM-GM)