Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Gọi K là giao điểm của EI và DM
Xét \(\Delta EKD\)và \(\Delta EKM\)có :
\(\widehat{E}_1=\widehat{E}_2\)( vì EI là tia phân giác )
\(EI\): Cạnh chung
\(\widehat{EKD}=\widehat{EKM}=90^o\)( GT)
Do đó : Tam giác vuông EKM = Tam giác vuông EKM
\(\Rightarrow ED=EM\)( cặp cạnh tương ứng )
b)
Xét \(\Delta EDI\)và \(\Delta EMI\)có :
\(ED=EM\)( câu a )
\(\widehat{E}_1=\widehat{E_2}\)( vì phân giác )
\(EI:\)Cạnh chung
Do đó : Tam giác EMI = tam giác EDI (c.g.c )
\(\Rightarrow\widehat{EDI}=\widehat{EMI}\)( cặp góc tương ứng )
Mà \(\widehat{EDI}=90^o\)
\(\Rightarrow\widehat{EMI}=90^o\)
\(\Rightarrow\Delta EMI\)là tam giác vuông ( đpcm)
c)
Vì \(\widehat{EMI}=90^o\)( câu b )
\(\Rightarrow\widehat{IMF}=90^o\)
Xét tam giác IMF ta có :
\(\widehat{IMF}=90\)
=> IF là cạnh lớn nhất ( cạnh đối diện với góc vuông )
\(\Rightarrow IF>IM\)
Mà \(IM=ID\)( Vì tam giác EDI = tam giác EMI )
\(\Rightarrow IF>ID\)
c ) Áp dụng t/c đường đồng quy .

Xin lỗi mk ko biết vẽ hình trên máy
a) Xét tam giác ABD và tan giác EBD có :
BD chung
góc ABD = góc EBD ( vì BD la phân giác góc B )
góc A = góc E ( = 90 )
=> Tam giác ABD = tam giác EBD ( cạnh huyền- góc nhọn )
=> AD = DE
Chúc bạn hc tốt

a, xét tam giác ABC và tam giác DBE có : góc B chung
AB = BD (Gt)
góc BAC = góc BDE = 90
=> tam giác ABC = tam giác DBE (cgv-gnk)
b, xét tam giác ABH và tam giác DBH có : BH chung
AB = BD (Gt)
góc HAB = góc HDB = 90
=> tam giác ABH = tam giác DBH (ch-cgv)
=> góc ABH = góc DBH (đn) mà BH nằm giữa AB và BD
=> BH là pg của góc ABC (đn)
c, AB = BD (gt) có BD = 6 (gt)
=> AB = 6
BD + DC = BC
BD = 6; CD = 4
=> BC =10
tam giác ABC vuông tại A (Gt)
=> BC^2 = AB^2 + AC^2
=> AC^2 = 10^2 - 6^2
=> AC^2 = 64
=> AC = 8 do AC > 0

A A C C B B E E D D I I M M G G J J H H K K
a) Do tam giác ABC vuông cân nên \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABE}=\widehat{ACD}\)
Xét tam giác vuông ABE và tam giác vuông ACD có:
AB = AC (gt)
\(\widehat{ABE}=\widehat{ACD}\)
\(\Rightarrow\Delta ABE=\Delta ACD\) (Cạnh góc vuông - góc nhọn kề)
\(\Rightarrow BE=CD;AE=AD\)
b) I là giao điểm của hai tia phân giác góc B và góc C của tam giác ABC nên AI cũng là phân giác góc A.
Do tam giác ABC cân tại A nên AI là phân giác đồng thời là đường cao và trung tuyến.
Vậy thì \(\widehat{AMC}=90^o;BM=MC=AM\)
Từ đó suy ra tam giác AMC vuông cân tại M.
c) Gọi giao điểm của DH, AK với BE lần lượt là J và G.
Do DH và AK cùng vuông góc với BE nên ta có
\(\Delta BDJ=\Delta BHJ;\Delta BAG=\Delta BKG\Rightarrow BD=BH;BA=BK\)
\(\Rightarrow HK=AD\)
Mà AD = AE nên HK = AE. (1)
Do tam giác BAK cân tại B, có \(\widehat{B}=45^o\Rightarrow\widehat{BAK}=\frac{180^o-45^o}{2}=67,5^o\)
\(\Rightarrow\widehat{GAE}=90^o-67,5^o=22,5^o=\frac{\widehat{IAE}}{2}\)
Suy ra AG là phân giác góc IAE.
Từ đó ta có \(\widehat{KAC}=\widehat{ICA}\left(=22,5^o\right)\)
\(\Rightarrow\Delta AKC=\Delta CIA\left(g-c-g\right)\Rightarrow KC=IA\)
Lại có tam giác AIE có AG là phân giác đồng thời đường cao nên nó là tam giác cân, hay AI = AE. Suy ra KC = AE (2)
Từ (1) và (2) suy ra HK = KC.
Bạn tự vẽ hình nha
a, Xét tg DNI và tg ENI ta có
NDI = NEI = 90 độ
DNI = INE ( Do NI là tia p/giác của DNE)
NI là cạnh huyền chung
=> tg DNI = tg ENI