Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác QIN và tam giác NKQ có L QN chung
góc MQN = góc MNQ do tam giác MNQ cân tại M (gT)
góc QIN = góc NKQ = 90
=> tam giác QIN = tam giác NKQ (ch-gn)
b, tam giác QIN = tam giác NKQ (Câu a)
=> QI = NK (đn)
QI + MI = MQ
NK + MK = MN
MN = MQ do tam giác MNQ cân tại M (gt)
=> MI = MK
=> tam giác MIK cân tại M (đn)
c, xét tam giác MIH và tam giác MKH có : MH chung
IM = MK (Câu b)
góc MIH = gics MKH = 90
=> tam giác MIH = tam giác MKH (ch-cgv)
d, tam giác MIK cân tại M (Câu b)=> góc MIK = (180 - góc IMK) : 2(tc)
tam giác MNQ cân tại M (gt) => gics MQN = (190 - góc IMK) : 2(tc)
=> góc MIK = góc MQN mà 2 góc này đồng vị
=> IK // QN (tc)
M N Q K I H
a. Vì \(\Delta MNQ\) cân tại M => \(MN=MQ,\widehat{MQN}=\widehat{MNQ}\)
Xét 2 tam giác vuông là \(\Delta NIQ\) và \(\Delta QKN\) ta có:
Cạnh chung NQ, \(\widehat{KNQ}=\widehat{IQN}\) ( vì \(\widehat{MNQ}=\widehat{MQN}\) )
\(\Rightarrow\Delta NIQ=\Delta QKN\)( cạnh huyền - góc nhọn )
b. Vì \(\Delta NIQ=\Delta QKN\Rightarrow IQ=KN\) ( 2 cạnh tương ứng )
Mà \(MN=MQ\Rightarrow MN-NK=MQ-IQ\Rightarrow MK=MI\)
\(\Rightarrow\Delta MKI\) cân tại M. ( ĐPCM )
c. Xét 2 tam giác vuông là \(\Delta MKH\) và \(\Delta MIH\) ta có:
\(MK=MI\left(cmt\right)\) và cạnh chung MH
\(\Rightarrow\Delta MKH=\Delta MIH\) ( cạnh huyền - cạnh góc vuông )
tự kẻ hình :
a, có EI // AC (gt)
=> góc ACI = góc AIB (đồng vị)
có góc ACI = góc ABC do tam giác ABC cân tại A (gt)
=> góc EIB = góc EBI
=> tam giác EIB cân tại E (dh)
b, góc ACI = góc EIB (câu a)
góc ACI + góc FCO = 180
góc EIB + góc EIO = 180
=> góc FCO = góc EIO (1)
tam giác EIB cân tại E (câu a) => EI = EB (đn)
mà có EB = CF (gt)
=> FC = EI
xét tam giác COF và tam giác IOE có : góc CFO = góc OEI (so le trong CF // EI)
và (1)
=> tam giác COF = tam giác IOE (g-c-g)
=> FO = OE (đn)
hăm đúng thì chịu
A B C M N I E F
Bài làm
a) Xét tam giác AMN có:
AM = AN
=> Tam giác AMN cân tại A.
b) Xét tam giác ABC cân tại A có:
\(\widehat{B}=\frac{180^0-\widehat{A}}{2}\) (1)
Xét tam giác AMN cân tại A có:
\(\widehat{M}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) => \(\widehat{B}=\widehat{M}\)
Mà hai góc này ở vị trí đồng vị.
=> MN // BC
c) Xét tam giác ABN và tam giác ACM có:
AN = AM ( gt )
\(\widehat{A}\) chung
AB = AC ( Vì tam giác ABC cân )
=> Tam giác ABN = tam giác ACM ( c.g.c )
=> \(\widehat{ABN}=\widehat{ACM}\)( hai cạnh tương ứng )
Ta có: \(\widehat{ABN}+\widehat{MBC}=\widehat{ABC}\)
\(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)
Mà \(\widehat{ABN}=\widehat{ACM}\)( cmt )
\(\widehat{ABC}=\widehat{ACB}\)( hai góc kề đáy của tam giác cân )
=> \(\widehat{IBC}=\widehat{ICB}\)
=> Tam giác BIC cân tại I
Vì MN // BC
=> \(\widehat{MNI}=\widehat{IBC}\)( so le trong )
\(\widehat{NMI}=\widehat{ICB}\)( so le trong )
Và \(\widehat{IBC}=\widehat{ICB}\)( cmt )
=> \(\widehat{MNI}=\widehat{NMI}\)
=> Tam giác MIN cân tại I
d) Xét tam giác cân AMN có:
E là trung điểm của MN
=> AE là trung tuyến
=> AE là đường trung trực.
=> \(\widehat{AEN}=90^0\) (1)
Xét tam giác cân MNI có:
E là trung điểm MN
=> IE là đường trung tuyến
=> IE là trung trực.
=> \(\widehat{IEN}=90^0\) (2)
Cộng (1) và (2) ta được:\(\widehat{IEN}+\widehat{AEN}=90^0+90^0=180^0\) => A,E,I thẳng hàng. (3)
Xét tam giác cân BIC có:
F là trung điểm BC
=> IF là trung tuyến
=> IF là trung trực.
=> \(\widehat{IFC}=90^0\)
Và MN // BC
Mà \(\widehat{IFC}=90^0\)
=> \(\widehat{IEN}=90^0\)
=> E,I,F thẳng hàng. (4)
Từ (3) và (4) => A,E,I,F thẳng hàng. ( đpcm )
# Học tốt #
tu ke hinh :
a, tam giac DMN can tai A (gt)
=> DM = DN (dn)
xet tam giac DMF va tam giac DNE co : goc D chung
ED = FD (gt)
=> tam giac DMF = tam giac DNE (c - g - c)
b, tam giac DMF = tam giac DNE (Cau a)
=> goc DMG = goc DNG (dn) (1) va goc DEN = goc DFM (dn)
goc DEN + NEM = 180 (kb)
goc DFM+ MFN = 180 (kb)
=> goc NEM = goc NFM (2)
tam giac DMN can tai D (gt)
=> DM = DN (dn)
DE = DF (gt)
DE + EM = DM
DF + FN = DN
=> EM = FN (3)
(1)(2)(3) => tam giac GME = tam giac GNE (g-c-g)