K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:

MC+MB=BC

=>BC=2MB+MB=3MB

=>\(\dfrac{CM}{CB}=\dfrac{2MB}{3MB}=\dfrac{2}{3}\)

Xét ΔCME và ΔCBA có

\(\widehat{CME}=\widehat{CBA}\)(hai góc đồng vị, ME//AB)

\(\widehat{C}\) chung

Do đó: ΔCME đồng dạng với ΔCBA

=>\(\dfrac{CM}{CB}=\dfrac{CE}{CA}=\dfrac{ME}{BA}=\dfrac{2}{3}\)

b: ΔCME đồng dạng với ΔCBA

=>\(\dfrac{C_{CME}}{C_{CBA}}=\dfrac{CM}{CB}=\dfrac{2}{3}\)

=>\(C_{CME}=\dfrac{2}{3}\cdot24=16\left(cm^2\right)\)

1 tháng 3 2023

Bài này là: Bài 27 trang 72 Toán 8 Tập 2 đúng không bạn 

a) \(\Delta ABC\)\(MN\) // \(BC\) \(\left(M\in AB;N\in AC\right)\Rightarrow\Delta AMN\sim\Delta ABC\) (định lí)

\(\Delta ABC\) có \(ML\) // \(AC\) \(\left(M\in AB;L\in BC\right)\Rightarrow\Delta MBL\sim\Delta ABC\) (định lí)

\(\Delta AMN\sim\Delta ABC\) và \(\Delta MBL\sim\Delta ABC\)

\(\Rightarrow\Delta AMN\sim\Delta MBL\)

b) Xét \(\Delta AMN\sim\Delta ABC\) có:

\(\widehat{A}\) chung

\(\widehat{AMN}=\widehat{B};\widehat{ANM}=\widehat{C}\)

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{MN}{BC}\)

Tỉ số đồng dạng : \(k=\dfrac{AM}{AB}=\dfrac{1}{2}\left(AM=\dfrac{1}{2}MB\right)\)

Xét \(\Delta MBL\sim\Delta ABC\) có:

\(\widehat{B}\) chung

\(\widehat{BML}=\widehat{A};\widehat{MLK}=\widehat{C}\)

\(\dfrac{BM}{BA}=\dfrac{BL}{BC}=\dfrac{ML}{AC}\)

Tỉ số đồng dạng: \(k'=\dfrac{BM}{BA}=\dfrac{2}{3}\)

Xét \(\Delta AMN\sim\Delta MBL\) có:

\(\widehat{AMN}=\widehat{B};\widehat{ANM}=\widehat{BLM};\widehat{A}=\widehat{BML}\)

\(\dfrac{AM}{MB}=\dfrac{AN}{ML}=\dfrac{MN}{BL}\)

Tỉ số đồng dạng: \(k''=\dfrac{AM}{MB}=\dfrac{1}{2}\)

22 tháng 4 2017

a) MN // BC => ∆AMN ∽ ∆ABC

ML // AC => ∆MBL ∽ ∆ABC

và ∆AMN ∽ ∆MLB

b)

∆AMN ∽ ∆ABC có:

ˆAMNAMN^ = ˆABCABC^; ˆANMANM^ = ˆACBACB^

AMABAMAB= 1313

∆MBL ∽ ∆ABC có:

ˆMBLMBL^ = ˆBACBAC^, ˆBB^ chung, ˆMLBMLB^ = ˆACBACB^

MBABMBAB= 2323

∆AMN ∽ ∆MLB có:

ˆMANMAN^ = ˆBMLBML^, ˆAMNAMN^ = ˆMBLMBL^, ˆANMANM^ = ˆM