\(\perp\) NP. (...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2018

a)

Xét tam giác NMD và tam giác NED, có:

NM=EH(gt)

\(\widehat{MND}=\widehat{DNE}\)(do MD là phân giác MNE)

ND là cạnh chung

Suy ra: Tam giác NMD=tam giác NED (c.g.c)

==> \(\widehat{NMD}=\widehat{NED}\) (2 góc tương ứng)

b) Có: +) MN vuông góc MP

+) EH vuông góc MP

==> MN // EH

c) Có : MN // EH

==> MNP = HEP (2 góc đồng vị)

a: Xét ΔMNQ vuông tại M và ΔHNQ vuông tại H có

NQ chung

\(\widehat{MNQ}=\widehat{HNQ}\)

Do đó: ΔMNQ=ΔHNQ

b: ta có: ΔMNQ=ΔHNQ

nên NM=NH

hay ΔNHM cân tại N 

mà \(\widehat{MNH}=60^0\)

nên ΔNHM đều

Bạn có thể tham khảo ơn đây nhé :

https://olm.vn/hoi-dap/detail/238592362678.html

a) Xét \(\Delta MPH\)và \(\Delta ENH\)có:

       HP = HN (H là trung điểm của NP)

       \(\widehat{MHP}=\widehat{EHN}\)(2 góc đối đỉnh)

        MH = HE (gt)

\(\Rightarrow\Delta MPH=\Delta ENH\left(c.g.c\right)\)

\(\Rightarrow MP=NE\)(2 cạnh tương ứng)

      \(\widehat{PMH}=\widehat{NEH}\)(2 góc đối đỉnh)

Mà 2 góc này ở vị trí so le trong

=> MP // NE
b) Xét \(\Delta AMH\)và \(\Delta BEH\)có:

    MH = HE (gt)

    \(\widehat{AMH}=\widehat{BEH}\)(cm a)

    MA = BE (gt)

\(\Rightarrow\Delta AMH=\Delta BEH\left(c.g.c\right)\)

\(\Rightarrow\widehat{AHM}=\widehat{BHE}\)(2 góc tương ứng)

Mà \(\widehat{BHE}+\widehat{BHM}=\widehat{MHE}=180^o\)

\(\Rightarrow\widehat{AHM}+\widehat{BHM}=\widehat{AHB}=180^o\)

=> 3 điểm A,H,B thẳng hàng

c) Xét \(\Delta NEH\)có:

\(\widehat{NHE}+\widehat{HNE}+\widehat{HEN}=180^o\)

\(\Rightarrow\widehat{NHE}+50^0+25^o=180^o\)

\(\Rightarrow\widehat{NHE}+75^o=180^o\)

\(\Rightarrow\widehat{NHE}=105^o\)

Vì góc NHE là góc ngoài của tam giác EKH

=> góc NHE = góc KEH + góc EKH

=> 105o = góc KEH + 90o

=> góc KEH = 15o

\(\widehat{NHE}+\widehat{HNE}+\widehat{HEN}=180^o\)

a: Xét ΔNMK co

NE vừa là đường cao, vừa là phân giác

=>ΔNMK cân tại N

=>NM=NK

Xét ΔNMD và ΔNKD có

NM=NK

góc MND=góc KND

ND chung

=>ΔMND=ΔKND

=>góc NKD=90 độ

=>DK vuông góc NP

b: Xét ΔNKM có

MH,NE là đường cao

MH cắt NE tại I

=>I là trực tâm

=>KI vuông góc MN

=>KI//MP

21 tháng 1 2020

a) Có △MNP cân tại M

\(\Rightarrow\left\{{}\begin{matrix}MN=MP\\\widehat{MNP}=\widehat{MPN}\end{matrix}\right.\)

\(MH\perp NP\Rightarrow\widehat{MHN}=\widehat{MHP}=90^o\)

Xét △MHN và △MHP có:

\(\widehat{MHN}=\widehat{MHP}=90^o\\ MN=MP\\ \widehat{MNH}=\widehat{MPH}\)

\(\Rightarrow\text{△MHN = △MHP}\left(\text{cạnh huyền - góc nhọn}\right)\)

\(\Rightarrow HN=HP\) (2 cạnh tương ứng)

Mà H ∈ NP

\(\Rightarrow\) H là trung điểm của NP

b) \(HD\perp MN\Rightarrow\widehat{HDM}=\widehat{HDN}=90^o\\ HE\perp MP\Rightarrow\widehat{HEM}=\widehat{HEP}=90^o \)

Xét △HDN và △HEP có:

\(\widehat{HDN}=\widehat{HEP}=90^o\\ HN=HP\\ \widehat{DNH}=\widehat{EPH}\)

\(\Rightarrow\text{△HDN = △HEP}\left(\text{cạnh huyền - góc nhọn}\right)\)

\(\Rightarrow HD=HE\) (2 cạnh tương ứng)

Xét △HDE có HD = HE

\(\Rightarrow\) △HDE cân tại H

c) Có △HDN = △HEP

\(\Rightarrow DN=EP\) (2 cạnh tương ứng)

Mà MN = MP

\(\Rightarrow MD=ME\)

Xét △MDE có MD = ME

\(\Rightarrow\) △MDE cân tại M

\(\Rightarrow\widehat{MDE}=\frac{180^o-\widehat{NMP}}{2}\left(1\right)\)

Lại có: △MNP cân tại M

\(\Rightarrow\widehat{MNP}=\frac{180^o-\widehat{NMP}}{2}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\widehat{MDE}=\widehat{MNP}\)

Mà 2 góc ở vị trí đồng vị

\(\Rightarrow\) DE // NP (dấu hiệu nhận biết)

\(MH\perp NP\)

\(\Rightarrow DE\perp MH\) (quan hệ từ vuông góc đến song song)

a) Xét ΔMHN vuông tại H và ΔMHP vuông tại H có

MN=MP(do ΔMNP cân tại M)

MH là cạnh chung

Do đó: ΔMHN=ΔMHP(cạnh huyền-cạnh góc vuông)

⇒NH=HP(hai cạnh tương ứng)

mà H∈NP(gt)

nên H là trung điểm của NP(đpcm)

b)Xét ΔDHN vuông tại D và ΔEHP vuông tại E có

NH=HP(cmt)

\(\widehat{DNH}=\widehat{EPH}\)(hai góc ở đáy của ΔMNP cân tại M)

Do đó: ΔDNH=ΔEPH(cạnh huyền-góc nhọn)

⇒DH=EH(hai cạnh tương ứng)

Xét ΔHDE có DH=EH(cmt)

nên ΔHDE cân tại H(đpcm)

c)Gọi O là giao điểm của DE và MH

Ta có: \(\widehat{NDH}+\widehat{HDO}+\widehat{MDO}=180độ\)

\(\widehat{PEH}+\widehat{OEH}+\widehat{MEO}=180độ\)

\(\widehat{NDH}=\widehat{HEP}\)(=90 độ)

\(\widehat{HDO}=\widehat{OEH}\)(ΔHDE cân tại H)

nên \(\widehat{MDO}=\widehat{MEO}\)

hay \(\widehat{MDE}=\widehat{MED}\)(vì O∈ED)

Xét ΔMDE có \(\widehat{MDE}=\widehat{MED}\)(cmt)

nên ΔMDE cân tại M(định lí đảo của tam giác cân)

Ta có: ΔMHN=ΔMHP(cmt)

\(\Rightarrow\widehat{NMH}=\widehat{PMH}\)(hai góc tương ứng)

mà D∈MN(gt)

và E∈MP(gt) và O∈MH(theo cách gọi)

nên \(\widehat{DMO}=\widehat{EMO}\)

Xét ΔMDO và ΔMEO có

MD=ME(ΔMDE cân tại M)

\(\widehat{DMO}=\widehat{EMO}\)(cmt)

MO là cạnh chung

Do đó: ΔMDO=ΔMEO(c-g-c)

\(\widehat{MOD}=\widehat{MOE}\)(hai góc tương ứng)

\(\widehat{MOD}+\widehat{MOE}=180độ\)(do D,O,E thẳng hàng)

nên \(\widehat{MOD}=\widehat{MOE}=\frac{180độ}{2}=90độ\)

⇒MO⊥DE

hay MH⊥DE(đpcm)