Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: Q và A đối xứng với nhau qua MN
nên MN là đường trung trực của QA
=>MN vuông góc với QA tại trung điểm của QA
Ta có: Q và B đối xứng với nhau qua MP
nên MP là đường trung trực của QB
=>MP vuông góc với QB tại trung điểm của QB
Xét tứ giác MRQS có
\(\widehat{MRQ}=\widehat{MSQ}=\widehat{SMR}=90^0\)
Do đó: MRQS là hình chữ nhật
b: Xét ΔMNP có
Q là trung điểm của NP
QS//MN
Do đó: S là trung điểm của MP
Xét tứ giác MQPB có
S là trung điểm của MP
S là trung điểm của QB
Do đó: MQPB là hình bình hành
mà QM=QP
nên MQPB là hình thoi

a) Xét tứ giác AMIN có:
∠(MAN) = ∠(ANI) = ∠(IMA) = 90o
⇒ Tứ giác AMIN là hình chữ nhật (có 3 góc vuông).
b) ΔABC vuông có AI là trung tuyến nên AI = IC = BC/2
do đó ΔAIC cân có đường cao IN đồng thời là đường trung tuyến
⇒ NA = NC.
Mặt khác ND = NI (t/c đối xứng) nên ADCI là hình bình hành
Lại có AC ⊥ ID (gt). Do đó ADCI là hình thoi.
c) Ta có: AB2 = BC2 – AC2 (định lí Py-ta-go)
= 252 – 202 ⇒ AB = √225 = 15 (cm)
Vậy SABC = (1/2).AB.AC = (1/2).15.20 = 150 (cm2)
d) Kẻ IH // BK ta có IH là đường trung bình của ΔBKC
⇒ H là trung điểm của CK hay KH = HC (1)
Xét ΔDIH có N là trung điểm của DI, NK // IH (BK // IH)
Do đó K là trung điểm của DH hay DK = KH (2)
Từ (1) và (2) ⇒ DK = KH = HC ⇒ DK/DC= 1/3.

Bài 1: Giải: Xét tam giác ACD có F,G lần lượt là trung điểm AC,DC nên FG là đường trung bình
\(\Rightarrow\)\(FG//AD\)
C/m tương tự đc \(EH//AD; GH//EF//BC\)
\(\Rightarrow EFGH\) là hình bình hành
a/Để EFGH là hình chữ nhật thì góc \(FGH=90^o\)
\(\Rightarrow góc HGD+góc FGC=90^o\)
Mà góc HGD=góc BCD;góc FGC= góc ADC ( góc đồng vị = nhau)
\(\Rightarrow\) góc BCD+góc ADC=\(90^o\)
\(\Rightarrow\)Để EFGH là hình chữ nhật thì tứ giác ABCD cần có góc BCD+góc ADC=\(90^o\)
b/Để EFGH là hình thoi thì FG=HG
Mà FG=1/2AD; HG=1/2BC
\(\Rightarrow\)AD=BC
\(\Rightarrow\)Để EFGH là hình thoi thì tứ giác ABCD có AD=BC
c/ để EFGH là hình vuông thì EFGH phải vừa là hình chữ nhật vừa là hình thoi\(\Rightarrow \)ABCD phải có đủ cả 2 điều kiện trên

1a/IM vuông góc AB=>AMI=90 do
IN vuông góc AC=>ANI=90 do
△ABC vuông tại A=>BAC=90 do
=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật
1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)
Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)
Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi
2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H
=> AM=MB VA EM=MH hay AB giao voi EH tai TD M
=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn
2b/Co AEBH la hcn=>EH=AB
+) Mà AB=AC=>EH=AC(1)
+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.
Co goc BAH=1/2 EAH ; góc AHE=1/2AHB
Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.
Mà 2 góc này ở vị trí SLT=> EH//AC(2)
Từ (1) va (2)=>tg AEHC la hbh

- Sử dụng định lý Thales cho các đường thẳng song song:
- Vì \(D F\) song song với \(N P\) (\(D F \parallel N P\)) và \(F\) thuộc \(M P\), \(D\) thuộc \(M N\), ta có tam giác \(M D F\) đồng dạng với tam giác \(M N P\).
- Từ đó, theo định lý Thales, ta có tỉ lệ:\(\frac{M D}{M N} = \frac{M F}{M P} = \frac{D F}{N P}\)
- Tương tự, vì \(E G\) song song với \(N P\) (\(E G \parallel N P\)) và \(G\) thuộc \(M P\), \(E\) thuộc \(M N\), ta có tam giác \(M E G\) đồng dạng với tam giác \(M N P\).
- Từ đó, theo định lý Thales, ta có tỉ lệ:\(\frac{M E}{M N} = \frac{M G}{M P} = \frac{E G}{N P}\)
- Sử dụng giả thiết \(M D = N E\):
- Ta có \(M N = M D + D E + E N\).
- Thay \(N E = M D\) vào, ta có \(M N = M D + D E + M D = 2 M D + D E\).
- Từ đó suy ra \(D E = M N - 2 M D\).
- Cũng từ \(M N = 2 M D + D E\), ta có \(M D = \frac{M N - D E}{2}\).
- Và \(N E = \frac{M N - D E}{2}\).
- Xét tỉ lệ của các đoạn thẳng:
- Từ \(\frac{M D}{M N} = \frac{D F}{N P}\), ta có \(D F = N P \cdot \frac{M D}{M N}\).
- Từ \(\frac{M E}{M N} = \frac{E G}{N P}\), ta có \(E G = N P \cdot \frac{M E}{M N}\).
- Sử dụng giả thiết \(G I \parallel M N\):
- Vì \(G I \parallel M N\) và \(I\) thuộc \(N P\), \(G\) thuộc \(M P\), ta có tam giác \(P G I\) đồng dạng với tam giác \(P N M\).
- Từ đó, theo định lý Thales, ta có tỉ lệ:\(\frac{P G}{P M} = \frac{P I}{P N} = \frac{G I}{M N}\)
- Liên hệ các đoạn thẳng \(D F\) và \(I P\):
- Chúng ta cần chứng minh \(D F = I P\).
- Từ \(D F = N P \cdot \frac{M D}{M N}\), ta cần chứng minh \(I P = N P \cdot \frac{M D}{M N}\).
- Điều này có nghĩa là ta cần chứng minh \(\frac{P I}{P N} = \frac{M D}{M N}\).
- Chúng ta biết \(\frac{P I}{P N} = \frac{P G}{P M}\). Vậy ta cần chứng minh \(\frac{P G}{P M} = \frac{M D}{M N}\).
- Tính toán \(P G\):
- Ta có \(M G\) là một đoạn thẳng trên \(M P\).
- Ta có \(M P = M F + F G + G P\) hoặc \(M P = M G + G P\).
- Từ \(\frac{M E}{M N} = \frac{M G}{M P}\), ta có \(M G = M P \cdot \frac{M E}{M N}\).
- Do đó, \(P G = M P - M G = M P - M P \cdot \frac{M E}{M N} = M P \left(\right. 1 - \frac{M E}{M N} \left.\right) = M P \cdot \frac{M N - M E}{M N}\).
- Vì \(M N - M E = M D\), nên \(P G = M P \cdot \frac{M D}{M N}\).
- Kiểm tra tỉ lệ \(\frac{P G}{P M}\):
- Thay biểu thức của \(P G\) vào tỉ lệ \(\frac{P G}{P M}\):\(\frac{P G}{P M} = \frac{M P \cdot \frac{M D}{M N}}{M P} = \frac{M D}{M N}\)
- Kết luận:
- Ta có \(\frac{P I}{P N} = \frac{P G}{P M}\) (từ bước 4).
- Ta vừa chứng minh được \(\frac{P G}{P M} = \frac{M D}{M N}\) (từ bước 7).
- Do đó, \(\frac{P I}{P N} = \frac{M D}{M N}\).
- Nhân cả hai vế với \(N P\), ta được \(P I = N P \cdot \frac{M D}{M N}\).
- Mà ta đã có \(D F = N P \cdot \frac{M D}{M N}\) (từ bước 1).
- Vì vậy, \(D F = I P\).
ta sẽ chứng minh rằng DF = IP với các điều kiện sau :
-tam giác MNP
-trên cạnh MN, lấy các điểm D và E sao cho MD=NE
-qua D và E , vẽ các đường thẳng song song với NP ,cắt MP tại F và M tương ứng
-từ G , kẻ đường thẳng GI // MN , cắt NP tại I

TL:
a,G là trọng tâm của tam giác ABC nên GD =1/2 BG suy ra GM= GD
Tương tự EG=GN suy ra MNDE là hình bình hành
a) Trong tam giác ABC , có :
EA = EB ( CE là trung tuyến )
DA = DC ( DB là trung tuyến )
=> ED là đường trung bình của tam giác ABC
=> ED // BC (1) , DE = 1/2 BC (2)
Trong tam giác GBC , có :
MG = MB ( gt)
NG = NC ( gt)
=> MN là đương trung bình của tam giác GBC
=> MN // BC (3) , MN = 1/2 BC (4)
Từ 1 và 2 => ED // MN ( * )
Từ 3 và 4 => ED = MN ( **)
Từ * và ** => EDMN là hbh ( DHNB )
a, Do F là trung điểm NP
E là trung điểm MP
=> EF là đường trung bình
=> \(EF=\dfrac{1}{2}MN=\dfrac{1}{2}.56=28\left(cm\right)\)
Diện tích tam giác MNP
\(S_{MNP}=\dfrac{1}{2}MN.MP=\dfrac{1}{2}.56.12=336\left(cm^2\right)\)
b,
Xét tứ giác NDEM có
ND // ME (gt)
DE // MN ( cmt)
=> NDEM là hình bình hành
mà có góc \(\widehat{NME}=90^o\)
=> NDEM là hình chữ nhật
c, NDEM là hình chữ nhật
=> ME = ND
mà ME = EP (do E là trung điểm MP)
=> ND = EP
Xet tứ giác NDPE có
ND = EP (cmt)
ND // EP (gt)
=> NDPE là hình bình hành