Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét 2 tam giác vuông AEC và AED có:
AC=AD(gt)
AE cạnh chung
=> t.giác AEC=t.giác AED(cạnh huyền-cạnh góc vuông)
=> \(\widehat{CAE}\)=\(\widehat{DAE}\)=> AE là p/g của \(\widehat{CAD}\)<=> AE là p/g của \(\widehat{CAB}\)
b, xét t.giác AIC và t.giác AID có:
AI cạnh chung
\(\widehat{IAC}\)=\(\widehat{IAD}\)(theo câu a)
AC=AD(gt)
=> t.giác AIC=t.giác AID(c.g.c)
=> IC=ID=> I là trung điểm của CD(1)
\(\widehat{AIC}\)=\(\widehat{AID}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIC}\)=\(\widehat{AID}\)=90 độ=> AI\(\perp\)CD(2)
từ (1) và (2) suy ra AE là trung trực của CD
A B C D E I
Bài 1 trc
Hình bác tự vẽ đc nhỉ
a) +) Xét \(\Delta\)ABD và \(\Delta\)ABC có
AB : cạnh chung
\(\widehat{DAB}=\widehat{BAC}\left(=90^o\right)\)
AD = AC (gt)
=> \(\Delta\) ABD = \(\Delta\) ABC (c-g-c )
b) Theo câu a ta có \(\Delta\) ABD = \(\Delta\) ABC
=> BD = BC ( 2 góc tương ứng )
+) Xét \(\Delta\) BDC có
\(\hept{\begin{cases}BD=BC\left(cmt\right)\\\widehat{C}=60^o\end{cases}}\)
=> \(\Delta\) BDC đều
c) +) Xét \(\Delta\) ABC vuông tại A
\(\Rightarrow\widehat{C}+\widehat{ABC}=90^o\) ( tính chất tam giác vuông )
\(\Rightarrow\widehat{ABC}+60^o=90^o\)
\(\Rightarrow\widehat{ABC}=30^o\)
+) Xét \(\Delta\) ABC vuông tại A có \(\widehat{ABC}=30^o\)
=> \(AC=\frac{1}{2}BC\) ( tính chất trong 1 tam giác vuông có 1 góc bằng 30 độ thì cạnh góc vuông đối diện vs góc 30 độ bằng 1 nửa cạnh huyền )
\(\Rightarrow BC=2.AC\)
\(\Rightarrow BC=2.4=8\) ( cm)
+) Xét \(\Delta\)ABC vuông tại A
\(\Rightarrow BC^2=AC^2+AB^2\) ( định lí Py-ta-go)
\(\Rightarrow AB^2=BC^2-AC^2\)
Bạn tự làm nốt nhá
Cau kia đang bận k giúp đc r
Cho tam giác abc vuông cân ở a ,m là trung điểm của bc, điểm e nằm giữa m và c.Ke bh,ck vuông với ae (h,k€ae) chứng minh bh=ak.C/m tam giác mbh= tam giác mak.C/m tam giác mhklaf tam giác vuông cân .Vex hình luôn cho mình mình cần gấpkhoang 6 tiênd nữa
a1, Xét tam giác AMB và tam giác AMC có :
AM chung
B=C(tam giác ABC cân )
AB=AC9tam giác ABC cân)
Do đó tam giác AMB=tam giác AMC(c.g.c)
a2, Vì tam giác AMB=tam giác AMC( cmt)
=>Bam=Cam ( 2 góc tương ứng)
=>AM là tia p/g góc A
Mình ms làm xong câu a thôi đợi mình nghĩ nót câu kia đã. bạn tick nha mình đảm bảo đúng
a) So sánh ∠B và ∠C
Xét ΔABC ta có: AC > AB (8 > 6) ⇒ ∠C > ∠B (định lí)
b) Tính BC ?
Áp dụng định lí Pytago vào ΔABC vuông tại A
Ta có: BC2 = AB2 + AC2
= 62 + 82
= 36 + 64 = 100
⇒ BC = 10 (cm)
c) EA = EH
Xét hai tam giác vuông ABE và HBE có:
∠ABE = ∠HBE (BE là phân giác)
BE : cạnh chung
Do đó: ΔABE = ΔHBE (cạnh huyền - góc nhọn)
⇒ EA = EH (hai cạnh tương ứng)
a) Xét ΔAHB và ΔAHC
Ta có: ∠AHB = ∠AHC = 900 (AH⊥BC)
AB = AC ( ΔABC cân tại A)
AH chung
nên ΔAHB = ΔAHC (cạnh huyền - cạnh góc vuông)
b) Ta có: BH = CH (ΔAHB = ΔAHC)
Mà H ∈ BC
nên H là trung điểm của BC
suy ra BH = \(\frac{1}{2}\)BC = \(\frac{1}{2}\)* 6 = 3cm
Xét ΔAHB vuông tại H (AH⊥BC)
Có: AH2 + BH2 = AB2 (Định lý Py-ta-go)
mà BH = 3cm; AB = 5cm
nên AH2 + 32 = 52
suy ra AH = 4cm
Ta có hai đường trung tuyến BE và CD của ΔABC cắt nhau tại G
nên G là trọng tâm của ΔABC
suy ra AG = \(\frac{2}{3}\)AH
mà AH = 4cm
nên AG = \(\frac{8}{3}\)cm
c) Có ΔABC cân tại A
mà AH là đường cao của ΔABC (AH⊥BC)
nên AH là phân giác của ΔABC
suy ra ∠BAH = ∠CAH
Xét ΔABG và ΔACG
Có AB = AC (ΔABC cân tại A)
∠BAH = ∠CAH (cmt)
AG chung
nên ΔABG = ΔACG (c-g-c)
suy ra ∠ABG = ∠ACG (2 góc tương ứng)