K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có ∆MNP vuong tại M

Áp dụng........

Nên NP²=NM²+MP²

       =>NP²=100 

VẬY NP=√100=10cm

b

Xét ∆MNI VÀ ∆HNPcó 

Góc NMI = góc NHI =90°

GÓC MNI= GÓC HNI ( TIA PHÂN GIÁC)

NI CANHN CHUNG

VAY ∆MNI=∆HNP(đpcm)

11 tháng 5 2018

cam on Tran Quoc Dat

a: NP=5cm

b: Xét ΔNMQ vuông tại M và ΔNKQ vuông tại K có

NQ chung

góc MNQ=góc KNQ

Do đo: ΔMNQ=ΔKNQ

c: Xét ΔMQH vuông tại M và ΔKNP vuông tại K có

QM=QK

\(\widehat{MQH}=\widehat{KQP}\)

Do đo;s ΔMQH=ΔKNP

Suy ra: MH=KP

=>NH=NP

hay ΔNHP cân tại N

20 tháng 1 2019

A M B C H K

a) Chứng minh MH=MK

Xét tam giác AMH và tam giac AMK có

AM cạnh chung

\(\widehat{MAH}=\widehat{MAK}\)(AM là tia phân giác của \(\widehat{BAC}\))

=> Tam giác AMH = tam giác AMK

=> MH=MK (đpcm)

b) Chứng minh tam giác ABC cân

Ta có M là trung điểm của BC (gt)

Nên AM là đường trung tuyến ứng cạnh BC

Mà AM cũng là đưởng phân giác ứng cạnh BC (gt)

Do đó tam giác ABC cân tại A (đpcm)

Kết bạn với mình nha :)

11 tháng 8 2020

BẠN TỰ VẼ HÌNH NHÉ !!!!!!!

a) Tam giác ABD và tam giác BDE có BAD=BED=90 độ; ABD=EBD (Do BD là tia p/g)

=> góc ADB = góc EDB

Xét tam giác ABD và tam giác EBD có: 

\(\hept{\begin{cases}ABD=EBD\\BAD=BED=90\\ADB=BDE\left(cmt\right)\end{cases}}\)

=> Tam giác ABD = tam giác EBD (gcg) => ĐPCM

b) Vì: Tam giác ABD = tam giác EBD (gcg)

=> AD=DE; AB=BE

=> 2 điểm B; D đều cách đều AE

=> BD là trung trực của AE. 

=> ĐPCM

11 tháng 8 2020

c) 

c) Có: AD=DE.

Mà: \(DE^2+BE^2=BD^2\)

=> \(BD^2>DE^2\)

=> \(BD>DE\)

=> \(BD>AD\)    (3) 

Mà: BDC là góc ngoài của tam giác ABD

=>  góc \(BDC=A+ABD=90+ABD\)

=> góc BDC > 90 độ (1)

Mà góc C + góc EDC = 90 độ 

=> góc C < 90 độ (2)

TỪ (1) VÀ (2) => góc BDC > góc C

=>  Theo tính chất giữa góc và cạnh thì: BC > BD      (4)

TỪ (3) VÀ (4) => \(BC>AD\)

VẬY TA CÓ ĐPCM.

d) Xét tam giác ADF và tam giác EDC có: 

\(\hept{\begin{cases}AF=CE\\ADC=EDC\left(dd\right)\\AD=ED\left(cmt\right)\end{cases}}\)

=>Tam giác ADF=Tam giác EDC (cgc)

=> góc DFA = góc DCE 

Mà: BAC=90 độ (gt) 

=> góc ACB + góc ABD= 90 độ

=> góc DFA + ABC =90 đọ

=> FEB=90 độ

=> D,E,F thẳng hàng

* Xét tam giác BFC có: EF vuông góc BC (CMT) ; CA vuông góc BF (gt) ; EF giao CA ={D}

=> Theo định lí đảo của trực tâm thì BD vuông góc CF

VẬY TA CÓ ĐPCM

28 tháng 11 2016

Ta có hình vẽ sau:

 

M N P K I

Xét ΔNMI và ΔNKI có:

NI: Cạnh chung

\(\widehat{INM}=\widehat{INK}\) (gt)

NM = NK (gt)

=> ΔNMI = ΔNKI ( c-g-c)

=> IM = IK (2 cạnh tương ứng) (đpcm)

b) Vì ΔNMI = ΔNKI ( ý a)

=> \(\widehat{IMN}=\widehat{IKN}\) = 90o(2 góc tương ứng)

Trong ΔIKM có: \(\widehat{IKN}\) = 90o

=> ΔIKM vuông tại K (đpcm)

 

19 tháng 12 2016

H M A P N

21 tháng 7 2015

 a.Tam giác ADB cân tại D(vì D thuộc trung trực của AB) Vâyh góc BAD = góc ABD = 70 độ (vì tam giác ABC cân tại A và góc A = 40 độ) vây góc CAD = góc BA - góc BAC = 70độ - 40 độ = 30độ 
b.Có góc MAD = 180 độ - goc BAD = 180 độ - 70 độ = 110 độ, góc ACD = 180 độ - gócACB = 180 độ - 70 độ = 110độ . Vây góc MAD = gócACD = 110độ,, AM = CD, AB = AC nên tgMAD = tgDCA nên 
BM = AD vì AD = BD nên BM = BD vậy tgBMD cân

Sửa đề: góc N=30 độ

a: \(\widehat{M}=180^0-30^0-60^0=90^0\)

b: Xét ΔNME vuông tại M và ΔNFE vuông tại F có

NE chung

\(\widehat{MNE}=\widehat{FNE}\)

Do đó: ΔNME=ΔNFE

Suy ra: EM=EF

c: Xét ΔEMK vuông tại M và ΔEFP vuông tại F có

EM=EF

\(\widehat{MEK}=\widehat{FEP}\)

Do đó: ΔEMK=ΔEFP