Cho tam giác MNP vuông tại M có MN=4cmc ,NP=5cm.Trên tia đối của tia MN lấy điểm A sao c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2021

không ạ !!!!!!!!!!

20 tháng 4 2021

Hình vẽ:

a: Xét ΔPAN có

PM vừa là đường cao, vừa là trung tuyến

=>ΔPAN cân tại P

b: \(PM=\sqrt{5^2-4^2}=3\left(cm\right)\)

Xét ΔPAN có 

NB,PM là trung tuyến

NB cắt PM tại G

=>G là trọng tâm

GP=2/3*3=2cm

c: CI là trung trực của MP

=>I là trung điểm của MP và CI vuông góc MP tại I

Xét ΔMPN có

I là trung điểm của PM

IC//MN

=>C là trung điểm của PN

=>PM,NB,AC đồng quy

a: Xét ΔPAN có 

PM là đường trung tuyến

PM là đường cao

DO đó: ΔPAN cân tại P

b: \(MP=\sqrt{5^2-4^2}=3\left(cm\right)\)

Xét ΔPNA có 

PM là đường trung tuyến

NB là đường trung tuyến

PM cắt NB tại G

Do đó; G là trọng tâm của ΔPAN

Suy ra: PG=2/3PM=2(cm)

25 tháng 4 2021

^ ^             con gà

\_/    

10 tháng 5 2016

tự vẽ hình

a)Xét tam giác PMN vuông ở M và tam giác PMA vuông ở M có:

PM:cạnh chung

MN=MA (gt)

=>tam giác PMN=tam giác PMA (2 cạnh góc vuông)

=>PN=PA (cặp cạnh t.ứ)

b)Xét tam giác PMN vuông ở M có:

PM2+MN2=PN2 (Pytago)

=>PM2=PN2-MN2=52-42=9

=>PM=3(cm)

Ta có: MA+MN=AN (M \(\in\) AN),mà MA=MN(gt)

=>M là trung điểm của AN

=>PM là đg trung tuyến ứng với cạnh AN (1)

Vì B là trung điểm của AP (gt)

=>NB là đg trung tuyến  ứng với cạnh AP (2)

Từ (1);(2) lại có NB cắt PM tại G

=>G là trọng tâm trong tam giác APM

=>\(GP=\frac{2}{3}PM=\frac{2}{3}.3=2\left(cm\right)\)

a) Xét ΔBNP có 

BA là đường trung trực ứng với cạnh PN(gt)

nên ΔBNP cân tại B(Định lí tam giác cân)

b) Xét ΔMBN vuông tại M và ΔCBP vuông tại C có

BN=BP(cmt)

\(\widehat{MBN}=\widehat{CBP}\)(hai góc đối đỉnh)

Do đó: ΔMBN=ΔCBP(cạnh huyền-góc nhọn)

a) Xét \(\Delta\)ANM và \(\Delta\)ABM có :

  • MN = MB ( gt )
  • Góc AMN = góc AMB ( vì MA là phân giác )
  • MA : cạnh chung

\(\Rightarrow\)\(\Delta\)ANM = \(\Delta\)ABM ( c . g . c )

\(\Rightarrow\)AN = AB ( hai cạnh tương ứng )

b) Gọi giao điểm giữa NB và MA là I

     Xét \(\Delta\)INM và \(\Delta\)IBM có :

  • MN = MB ( gt )
  • Góc IMN = góc IMB ( vì MI là phân giác ) 
  • MI : cạnh chung

\(\Rightarrow\)\(\Delta\)INM = \(\Delta\)IBM ( c . g . c )

\(\Rightarrow\)Góc MIN = góc MIB ( hai góc tương ứng )

Mà góc MIN + góc MIB = 180 ( do kề bù )

nên góc MIN = góc MIB = 180 ÷ 2 = 90 độ hay NB vuông góc với MA .

18 tháng 12 2021