K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔMDN vuông tại D

=>\(MD^2+DN^2=MN^2\)

=>\(MN^2=6^2+8^2=36+64=100=10^2\)

=>MN=10(cm)

Xét ΔDNM vuông tại D có \(\sin DMN=\frac{DN}{MN}=\frac{6}{10}=\frac35\)

nên \(\hat{DMN}\) ≃36 độ 52p

b: Xét ΔMDN vuông tại D có DA là đường cao

nên \(MA\cdot MN=MD^2\left(1\right)\)

Xét ΔMDP vuông tại D có DB là đường cao

nên \(MB\cdot MP=MD^2\left(2\right)\)

Từ (1),(2) suy ra \(MA\cdot MN=MB\cdot MP\)

c: Xét ΔMIN vuông tại I và ΔMKP vuông tại K có

\(\hat{IMN}\) chung

Do đó: ΔMIN~ΔMKP

=>\(\frac{MI}{MK}=\frac{MN}{MP}\)

=>\(\frac{MI}{MN}=\frac{MK}{MP}\)

Xét ΔMIK và ΔMNP có

\(\frac{MI}{MN}=\frac{MK}{MP}\)

góc IMK chung

Do đó: ΔMIK~ΔMNP

=>\(\hat{MIK}=\hat{MNP}\left(3\right)\)

ta có: \(MA\cdot MN=MB\cdot MP\)

=>\(\frac{MA}{MP}=\frac{MB}{MN}\)

Xét ΔMAB và ΔMPN có

\(\frac{MA}{MP}=\frac{MB}{MN}\)

góc AMB chung

Do đó: ΔMAB~ΔMPN

=>\(\hat{MBA}=\hat{MNP}\left(4\right)\)

Từ (3),(4) suy ra \(\hat{MBA}=\hat{MIK}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên BA//KI

26 tháng 10 2021

b: \(\widehat{NMH}+\widehat{N}=90^0\)

\(\widehat{P}+\widehat{N}=90^0\)

Do đó: \(\widehat{NMH}=\widehat{P}\)

a: \(NP=\sqrt{MN^2+MP^2}=10\left(cm\right)\)

b: Xét ΔMNP vuông tại M có MH là đường cao

nên MH*NP=MN*MP

=>MH*10=6*8=48

=>MH=4,8cm

Xét ΔMNP có MD là phân giác

nên \(MD=\dfrac{2\cdot6\cdot8}{6+8}\cdot cos45=\dfrac{24}{7}\sqrt{2}\left(cm\right)\)

c: MN*sinP+MP*sinN

=MN*MN/NP+MP*MP/NP

=(MN^2+MP^2)/NP

=NP^2/NP

=NP

b: Xét ΔPDM vuông tại P có PH là đường cao ứng với cạnh huyền MD, ta được:

\(MH\cdot MD=MP^2\left(1\right)\)

Xét ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(PH\cdot PN=MP^2\left(2\right)\)

Từ (1) và (2) suy ra \(MH\cdot MD=PH\cdot PN\)

a: góc MIN=góc MHN=90 độ

=>MNHI nội tiếp

b: MNHI nội tiếp

=>góc NMH=góc NIH

 

26 tháng 10 2023


 A  áp dụng hệ thức lượng trong tam giác....
+  MI=NI*IP
  MI=5*7
MI=35
BC=NI+IP
BC=5+7=12
+   MN=NP*NI
MN=  12*5=60