Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. M N P K H
Kẻ \(MH\perp NP\) tại H
Ta có: \(S_{MNP}=\dfrac{1}{2}MH.NP\) (1)
\(S_{MNK}=\dfrac{1}{2}MH.KN\) (2)
Ta lại có: KN=MN mà NM<NP
\(\Rightarrow KN< NP\) (3)
Từ (1),(2) và (3) suy ra: \(S_{MNP}>S_{MNK}\)
2.
\(Sin^21^o+Sin^22^o+Sin^23^o+...+Sin^287^o+Sin^288^o+Sin^298^o\)
\(=\left(Sin^21^o+Sin^289^o\right)\left(Sin^22^o+Sin^288^o\right)+...+Sin^245^o\\ =\left(Sin^21^o+Cos^21^o\right)\left(Sin^22^o+Cos^22^o\right)+....+Sin^245^o\\ =44+Sin^245^o\\ =44+\dfrac{1}{2}=44,5\)
Hai tam giác vuông DMN và EPN đồng dạng vì có góc nhọn N chung nên D N M N = E N P N Hai tam giác DNE và MNP đồng dạng vì có góc N chung và D N M N = E N P N
nhìn cái đề thì cảm nhận được dùng tam giác dặc biết để giải cũng ra đáp án như vậy
a, vì \(BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+9^2}=15\)
=> ABC là tam giác vuông (theo định lí Pytago)
b, sin B = 0,6 ; sin C = 0,8 (sin = đối/huyền)
=> \(\dfrac{sinB+sinC}{sinB-sinC}=\dfrac{0,6+0,8}{0,6-0,8}=-7\)
c, AH.BC = AC.AB
=>\(AH=\dfrac{AC.AB}{BC}=\dfrac{9.12}{15}=7,2\)
d: Sửa đề: AN*AB=AM*AC
AN*AB=AH^2
AM*AC=AH^2
Do đó: AN*AB=AM*AC
e: \(\dfrac{BC}{cotB+cotC}=BC:\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)
\(=BC\cdot\dfrac{AH}{BC}=AH\)
A B C D E O H F
a) Tự chứng minh
b) Diện tích của tứ giác có 2 đường chéo vuông góc với nhau là nửa tích 2 đường chéo.
Theo câu a, \(OA⊥EF\)nên \(S_{AEOF}=\frac{1}{2}OA.EF=\frac{1}{2}R.EF\)
tương tự:\(S_{BDOF}=\frac{1}{2}DF.OB=\frac{1}{2}R.DF\);\(S_{DOEC}=\frac{1}{2}.OC.DE=\frac{1}{2}R.DE\)
\(\Rightarrow S_{AEOF}+S_{BDOF}+S_{DOEC}=\frac{1}{2}R.P\)
hay \(S_{ABC}=\frac{1}{2}R.P=\frac{1}{4}.2RP\le\frac{R^2+P^2}{4}\)(Theo BĐT AM-GM)