Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F G K
Trên tia đối của DG, lấy điểm K sao cho DK=DG. Nối K với B. Ta được \(\Delta\)BGK với 3 cạnh BG,GK,BK.
AD là trung tuyến của \(\Delta\)ABC, G là trọng tâm của tam giác ABC \(\Rightarrow\)AG=2/3AD \(\Rightarrow\)DG=1/3AD.
DK=DG \(\Rightarrow\)DK=1/3 AD \(\Rightarrow\)DG+DK=1/3AD+1/3AD=2/3AD \(\Rightarrow\)GK=2/3 AD (1)
Ta có: BG là 1 cạnh của \(\Delta\)BGK và BG=2/3BE (2)
Xét \(\Delta\)CGD và \(\Delta\)BKD có:
CD=BD
\(\widehat{CDG}\)=\(\widehat{BDK}\) (Đối đỉnh) \(\Rightarrow\)\(\Delta\)CGD=\(\Delta\)BKD (c.g.c)
DG=DK
\(\Rightarrow\)CG=BK (2 cạnh tương ứng). Mà theo tính chất 3 đường trung tuyến của tam giác : CG=2/3 CF \(\Rightarrow\)BK=2/3CF (3)
Từ (1),(2) và (3) \(\Rightarrow\)3 đường trung tuyến AD,BE,CF tỉ lệ với 3 cạnh của \(\Delta\)BGK lần lượt là GK,BG,BK.
\(\Rightarrow\)AD,BE,CF thỏa mãn bất đẳng thức tam giác hay ta có thể nói AD,BE,CF là 3 cạnh của một hình tam giác (đpcm).
(C) ba đường trung tuyến của tam giác đó
Đáp án đúng :
(C) ba đường trung tuyến của tam giác đó