Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 tam giác BME và tam giác AHC
có \(\widehat{BME}=\widehat{AHC}=90^0\)
\(\widehat{ABC}chung\)
nên 2 tam giác BME và tam giác AHC đồng dạng với nhau
b)
xét tam giác ABH
có AE là phân giác của góc BAH
nên \(\widehat{MAE}=\widehat{HAE}\)
có \(\widehat{MAE}+\widehat{CAE}=90^0\)
\(\widehat{HAE}+\widehat{CEA}=90^0\)
suy ra \(\widehat{CAE}=\widehat{CEA}\)do đó tam giác AEc cân tại C
c)
xét tam giác AHC có
AD là tia phân giác của góc HAC
nên \(\frac{HD}{CD}=\frac{AH}{AC}\Rightarrow AH\cdot CD=DH\cdot AC\)
lại có AC = EC
nên \(AH\cdot CD=EC\cdot AC\)
d)
chứng minh tương tự câu b
ta có tam giác ABD cân tại B
suy ra AB = BD
mà AC = EC
nên AB + AC = BD + EC = BD + CD + ED = BC + DE
Hình tự vẽ nhá
Vì tam giác ABC cân tại A nên:
\(\widehat{B}=\widehat{C}\)
Mà \(\widehat{B}=\widehat{DME}\)
Suy ra: \(\widehat{C}=\widehat{DME}\)
Mặt khác: \(\widehat{BME}=\widehat{BMD}+\widehat{DME}=\widehat{MEC}+\widehat{C}\)(góc ngoài của tam giác MEC)
Suy ra: \(\widehat{BMD}=\widehat{MEC}\)
Xét tam giác BMD và tam giác CEM có:
+ \(\widehat{B}=\widehat{C}\)(gt)
+\(\widehat{BMD}=\widehat{MEC}\)(cmt)
Do đó: \(\Delta BMD~\Delta CEM\)(g.g)
Suy ra: \(\frac{BM}{CE}=\frac{BD}{CM}\Leftrightarrow BM\cdot CM=CE\cdot BD\)
Vì BM,CM không đổi (vì BM=CM) nên BM.CM không đổi
Vậy BD.CE không đổi
ý c nhé, a và b dễ tự làm nhé:
https://vn.answers.yahoo.com/question/index?qid=20110323013140AAJ5GpF