K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2021

a: Xét ΔMNK và ΔMPK có

MN=MP

MK chung

NK=PK

Do đó: ΔMNK=ΔMPK

b: Ta có: ΔMNP cân tại M

mà MK là đường trung tuyến

nên MK là đường cao

24 tháng 12 2021

ctv  từ viết tắt của cộng tác viên, cộng tác viên  một nghề mà người làm việc không có trong danh sách nhân viên chính thức của cty, dự án hay cơ quan tổ chức tuyển dụng họ"

a: Xét ΔMNK và ΔMPK có 

MN=MP

NK=PK

MK chung

Do đó: ΔMNK=ΔMPK

b: Ta có: ΔMNP cân tại M

mà MK là đường trung tuyến

nên MK là đường cao

20 tháng 12 2019

B ở đâu vậy bạn ? Trong đề làm gì có nói kẻ B mà từ B đã kẻ đường vuông góc rồi ?

20 tháng 12 2019

từ P nha

21 tháng 3 2017

Cho tam giác ABC,M là trung điểm của BC.Trên tia đối của tia MA lấy điểm E sao cho ME = MA

CMR:a)Tam giác ABM = Tam giác ECM

        b)AB song song với CE

21 tháng 3 2017

ở bài tam giácMNP:

a,đầu tiên hãy chứng minh rằng tam giácMON =tam giácMOP(g.c.g)

suy ra góc MON bắng góc MOP,suy ra MON=MOP=90độ

vậy MO vuông  góc với NP

24 tháng 3 2020

M N P I

a) Xét tam giác MNP vuông tại M có I là trung điểm NP (gt)

=> MI cũng là phân giác trong của \(\widehat{NMP}\)

=> \(\widehat{NMI}=\widehat{IMP}\)

Xét tam giác MIP và tam giác MIN có:

IM chung

\(\widehat{NMI}=\widehat{IMP}\left(cmt\right)\)

NI=PI ( I là trung điểm NP)

=> Tam giác MIP=tam giác MIN (cgc) 

b) Có tam giác MIP= tam giác MIN (cmt)

=> MP=MN (2 cạnh tương ứng)

Xét tam giác MNP vuông tại M có MP=MN (cmt)

=> Tam giác MNP vuông cân tại M

Có MI là đường trung tuyển tam giác MNP

Mà trong tam giác vuông cân đường trung tuyến trùng với đường cao

=> MI _|_ NP (đpcm)

c) F là điểm gì vậy?

NM
12 tháng 11 2021

ta cso:

undefined

a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔMNI=ΔKNI

b: Ta có: ΔMNI=ΔKNI

nên NM=NK

Xét ΔNMK có NM=NK

nên ΔNMK cân tại N

mà \(\widehat{MNK}=60^0\)

nên ΔNMK đều

c: Ta có: ΔMNI=ΔKNI

nên MI=IK

mà IK<IP

nên MI<IP

d: Xét ΔMNP vuông tại M có

\(NP=\dfrac{MN}{\sin30^0}\)

\(=3:\dfrac{1}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(MN^2+MP^2=NP^2\)

\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)

a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔMNI=ΔKNI

b: Ta có: ΔMNI=ΔKNI

nên NM=NK

Xét ΔMNK có NM=NK

nên ΔMNK cân tại N

Xét ΔMNK cân tại N có \(\widehat{MNK}=60^0\)

nên ΔMNK đều

c: Ta có: ΔMNI=ΔKNI

nên MI=IK

mà IK<IP

nên MI<IP

d: Xét ΔMNP vuông tại M có

\(NP=\dfrac{MN}{\sin30^0}\)

\(=3:\dfrac{1}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(MN^2+MP^2=NP^2\)

\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)