K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2016

Xét tam giác PAB ta có:

PA = PB (gt)

-> tam giác PAB cân tại P 

-> góc PAB = góc PBA ( tính chất tam giác cân )

Xét tam giác MNP cân tại P , ta có:

góc M= góc N ( tính chất tam giác cân )

Xét tam giác PAB ta có:

Góc P+ PAB + PBA = 180 độ ( định lí tổng 3 góc trong tam giác )

mà PAB=PBA (cmt)

-> PAB = \(\frac{180-P}{2}\left(1\right)\)

Xét tam giác PMN, ta có:

P + M +N = 180 độ ( định lí tổng 3 góc trong tam giác )

-> M = \(\frac{180-P}{2}\left(2\right)\)

Từ (1) và (2) -> PAB = M 

mà PAB và M là 2 góc đồng vị

-> AB // MN ( dấu hiệu nhận biết 2 đường thẳng song song)

Xét tứ giác MABN ,ta có:

AB // MN 

-> MABN là hình thang có 2 góc M và N kề 1 đáy bằng nhau

Bài 1: Cho tam giác ABC.Trên AC lấy 1 điểm B' sao cho AB'=AB, trên AC lấy điểm C' sao cho AC'=AC. CMR tứ giác BB'CC' là hình thang.Bài 2:CMR: nếu 1 tứ giác có phân giác trong của hai góc kề với một cạnh vuông góc với nhau thì tứ giác đó là hình thang.Bài 3: Cho hình thang ABCD(AB//CD). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc cạnh đáy CD:. CM AD+BC=CD.Bài 4: a)Tính số đo của các góc trong...
Đọc tiếp

Bài 1: Cho tam giác ABC.Trên AC lấy 1 điểm B' sao cho AB'=AB, trên AC lấy điểm C' sao cho AC'=AC. CMR tứ giác BB'CC' là hình thang.

Bài 2:CMR: nếu 1 tứ giác có phân giác trong của hai góc kề với một cạnh vuông góc với nhau thì tứ giác đó là hình thang.

Bài 3: Cho hình thang ABCD(AB//CD). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc cạnh đáy CD:. CM AD+BC=CD.

Bài 4: a)Tính số đo của các góc trong tứ giác ABCD, biết góc A:góc B:góc C:góc D=2:2:1:1.

b)Tứ giác ABCD là hình gì?Vì sao?

Bài 5:Cho tam giác ABC cân tại A. Kẻ các phân giác BD,CE của các góc B và C.

a)Cm: Tam giác ADB= tam giác AEC.

b)Cm: Tứ giác BEDC là hình thang cân có cạnh bên bằng 1/2 đáy.

Bài 6:Cho tam giác ABC vuông tại A có góc ABC=60 độ. Kẻ tia Ax song song với BC.Trên tia Ax lấy điểm D sao cho AD=BC.

a) Tính số đo các góc BAD và BAC.

b)Cm tứ giác ABCD là hình thang cân.

Mình đang cần gấp nên mong các bạn giải giùm mình. ^-^

2
12 tháng 6 2021

Bài 1:

a.

AB // CD

=> A + D = 1800 (2 góc trong cùng phía)

=> A = 1800 - D = 1800 - 540 = 1260

AB // CD

=> B + C = 1800 (2 góc trong cùng phía)

=> B = 1800 - C = 1800 - 1050 = 750

b.

AB // CD 

=> A + D = 1800 (2 góc trong cùng phía)

=> A = (1800 - 320) : 2 = 740

=> D = 1800 - 740 = 1060

AB // CD

=> B + C = 1800 (2 góc trong cùng phía)

=> B = 1800 : (1 + 2) . 2 = 1200

=> C = 1800 - 1200 = 600

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Câu 1:

1. Vì $P,Q$ lần lượt là trung điểm của $AB,AC$ nên $PQ$ là đường trung bình của tam giác $ABC$ ứng với $BC$

$\Rightarrow PQ=\frac{1}{BC}=MC$ và $PQ\parallel BC$ hay $PQ\parallel MC$

Tứ giác $PQCM$ có cặp cạnh đối $PQ$ và $MC$ vừa song song vừa bằng nhau nên $PQCM$ là hình bình hành.

2.Vì tam giác $ABC$ cân tại $A$ nên đường trung tuyến $AM$ đồng thời là đường cao. Hay $AM\perp BC$

Tứ giác $NAMB$ có 2 đường chéo $MN, AB$ cắt nhau tại trung điểm $P$ của mỗi đường nên $NAMB$ là hình bình hành. 

Hình bình hành $NAMB$ có 1 góc vuông ($\widehat{AMB}$) nên $NAMB$ là hình vuông.

$\Rightarrow NB\perp BM$ hay $NB\perp BC$ (đpcm)

3.

Vì $PQCM$ là hình bình hành nên $PM\parallel QC; PM=QC$. Mà $P,M,N$ thẳng hàng; $PM=PN$ nên $PN\parallel QC$ và $PN=QC$

Tứ giác $PNQC$ có cặp cạnh đối $PN, QC$ song song và bằng nhau nên $PNQC$ là hình bình hành. 

Do đó $PC\parallel QN(1)$

Mà $PC\parallel QF$ (2)

Từ $(1);(2)\Rightarrow Q,N,F$ thẳng hàng (đpcm)

31 tháng 12 2020

Chị ơi  NB vuông góc với Bc nữa ạ

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC

hay MNCB là hình thang

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC

hay MNCB là hình thang

21 tháng 8 2023

Cho ai ko đọc đc câu hỏi thì:

a) cmr tam giác ABD = tam giác AEC

B) cm tứ giác BCDE là hình thang cân có đáy nhỏ bằng cạnh bên

C) cho góc A = 40 độ. Tính các góc còn lại của hình thang cân BCDE

a: Xét ΔABD và ΔACE có

góc ABD=góc ACE

AB=AC

góc BAD chung

=>ΔABD=ΔACE

b:ΔABD=ΔACE

=>AD=AE

Xét ΔABC có AE/AB=AD/AC

nên ED//BC

Xét tứ giác BEDC có

DE//BC

góc EBC=góc DCB

=>BEDC là hình thang cân

ED//BC

=>góc EDB=góc DBC

=>góc EDB=góc EBD

=>ED=EB

BEDC là hình thang cân

=>EB=DC

=>EB=ED=DC

c: góc EBC=góc DCB=(180-40)/2=70 độ

góc BED=góc EDC=180-70=110 độ

11 tháng 9 2016

2) Gọi giao điểm của AC và BD là O.
Vì ABCD là hình thang cân nên tam giác AOB cân tại O mà góc AOB = 600

 \(\Rightarrow\) AOB là tam giác đều,  COD là tam giác đều

Mặt khác:     BM là đường cao của tam giác AOB nên BM cũng là trung tuyến \(\Rightarrow\)MA = MO
                   CN là đường cao của tam giác COD nên CN cũng là trung tuyến \(\Rightarrow\) NO = ND
Tam giác AOD có: MA = MO, NO = ND \(\Rightarrow\)\(MN=\frac{AD}{2}\)
Tam giác BMC vuông tại M có MP là trung tuyến  \(\Rightarrow\) \(MP=\frac{BC}{2}=\frac{AD}{2}\)
Tam giác BNC vuông tại N có NP là trung tuyến  \(\Rightarrow\) \(NP=\frac{BC}{2}=\frac{AD}{2}\)
Do đó:      \(MN=MP=NP\)        \(\Rightarrow\)đpcm

25 tháng 5 2019

tui có nick