Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M P N 3 4 A C G
a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ
\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)
THAY\(NP^2=4^2+3^2\)
\(NP^2=16+9\)
\(NP^2=25\)
\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)
XÉT \(\Delta MNP\)CÓ
\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)
\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)
B) xét \(\Delta\text{ CPM}\)VÀ\(\Delta\text{CPA}\)CÓ
\(PM=PA\left(GT\right)\)
\(\widehat{MPC}=\widehat{APC}=90^o\)
PC LÀ CAH CHUNG
=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)
c)
\(\Delta CPM=\Delta CPA\left(cmt\right)\)
\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)
\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)
\(\widehat{NMC}+\widehat{CMP}=90^o\)
\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)
\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)
\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)
\(\Rightarrow\Delta NMC\text{ cân}\)
\(\Rightarrow CN=CM\left(đpcm\right)\)
Câu a)
Xét tam giác MNO và tam giác HNO có :
NO : chung
MN = NH ( GT )
góc MNO = góc ONH ( do NO là phân giác góc MNP )
=> tam giác MNO = tam giác HNO ( cgc )
=> góc NMO = góc OHN ( cặp góc tương ứng )
mà góc NMO = 90 độ ( GT )
=> góc OHN = 90 độ
=> OH vuông góc NP
Vậy....
Câu b)
Do tam giác MNO = tam giác HNO ( CM ở câu a )
=> MO = OH
Xét tam giác MOK và tam giác HOP có :
góc OMK = góc OHP ( = 90 độ )
MO = HO ( CMT )
góc MOK = góc HOP ( 2 góc đối đỉnh )
=> tam giác MOK = tam giác HOP ( gcg )
=> OK = OP
Câu c)
Do tam giác MNO = tam giác HNO ( CM ở câu a)
=> góc NOM = góc NOH ( cặp góc tương ứng )
Mà góc NOM = góc IOP ( 2 góc đối đỉnh )
và góc NOH = góc KOI ( 2 góc đối đỉnh )
=> góc KOI = góc POI
Xét tam giác KOI và tam giác POI có :
OK =PO ( CM ở câu b )
OI : chung
góc KOI = góc POI ( CMT )
=> tam giác KOI = tam giác POI ( cgc )
=> KI = IP
=> I là trung điểm KP
Ta có : NM = NH ( GT )
Mà MK = HP ( do tam giác MOK = tam giác HOP )
=> MN + MK = HN + HP
=> NK = NP
=> tam giác NKP cân tại N
=> góc NKP = ( 180 độ - góc KNP )/2
CMTT : góc NMH = ( 180 độ - góc MNH )/2
Hay góc NMH = ( 180 độ - góc KNP )/2
=> góc NKP = góc NMH
Mà 2 góc ở vị trí đồng vị
=> MH // PK
Xét tam giác MNO và tam giác HNO có :
NO : chung
MN = NH ( GT )
góc MNO = góc ONH ( do NO là phân giác góc MNP )
=> tam giác MNO = tam giác HNO ( cgc )
=> góc NMO = góc OHN ( cặp góc tương ứng )
mà góc NMO = 90 độ ( GT )
=> góc OHN = 90 độ
=> OH vuông góc NP
Vậy....
Câu b)
Do tam giác MNO = tam giác HNO ( CM ở câu a )
=> MO = OH
Xét tam giác MOK và tam giác HOP có :
góc OMK = góc OHP ( = 90 độ )
MO = HO ( CMT )
góc MOK = góc HOP ( 2 góc đối đỉnh )
=> tam giác MOK = tam giác HOP ( gcg )
=> OK = OP
Câu c)
Do tam giác MNO = tam giác HNO ( CM ở câu a)
=> góc NOM = góc NOH ( cặp góc tương ứng )
Mà góc NOM = góc IOP ( 2 góc đối đỉnh )
và góc NOH = góc KOI ( 2 góc đối đỉnh )
=> góc KOI = góc POI
Xét tam giác KOI và tam giác POI có :
OK =PO ( CM ở câu b )
OI : chung
góc KOI = góc POI ( CMT )
=> tam giác KOI = tam giác POI ( cgc )
=> KI = IP
=> I là trung điểm KP
Ta có : NM = NH ( GT )
Mà MK = HP ( do tam giác MOK = tam giác HOP )
=> MN + MK = HN + HP
=> NK = NP
=> tam giác NKP cân tại N
=> góc NKP = ( 180 độ - góc KNP )/2
CMTT : góc NMH = ( 180 độ - góc MNH )/2
Hay góc NMH = ( 180 độ - góc KNP )/2
=> góc NKP = góc NMH
Mà 2 góc ở vị trí đồng vị
=> MH // PK
a) Xet tam giac MNK va tam giac MPK co:
Goc MKP = goc MKN = 90 do ( MK vuong goc voi NP ) (1)
MK ( canh chung ) (2)
MN = MP ( tam giac MNP can tai M ) (3)
Tu (1), (2), (3) => Tam giac MNK = tam giac MPK ( canh huyen - canh goc vuong )
b) Ta co: goc MNK = goc MPK ( 2 goc o day cua tam giac can MNP ) va
goc MPK + goc MPB = 180 do ( ke bu ); goc MNK + goc MNA = 180 do ( ke bu )
ma goc MPK = goc MNK ( cmt ) => goc MPB = goc MNA
Xet tam giac MNA va tam giac MPB co:
PB = NA ( gt ) (1)
MP = MN ( tam giac MNP can tai M ) (2)
goc MPB = goc MNA ( cmt ) (3)
Tu (1), (2) ,(3) => tam giac MNA = tam giac MPB ( c.g.c )
=> MA = MB ( 2 canh tuong ung )
c) Ta co: DE // AB ma goc MDE va goc MAB la 2 goc dong vi => goc MDE = goc MAB
MED MBA MED MBA
Vay tam giac MDE la tam giac can ( tam giac MDE co 2 goc bang nhau )