K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2020

M P N 3 4 A C G

a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ

\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)

THAY\(NP^2=4^2+3^2\)

\(NP^2=16+9\)

\(NP^2=25\)

\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)

XÉT \(\Delta MNP\)

\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)

\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)

B) xét \(\Delta\text{ CPM}\)\(\Delta\text{CPA}\)

 \(PM=PA\left(GT\right)\)

\(\widehat{MPC}=\widehat{APC}=90^o\)

PC LÀ CAH CHUNG 

=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)

23 tháng 6 2020

c)

\(\Delta CPM=\Delta CPA\left(cmt\right)\)

\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)

\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)

             \(\widehat{NMC}+\widehat{CMP}=90^o\)

\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)

\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)

\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)

\(\Rightarrow\Delta NMC\text{ cân}\)

\(\Rightarrow CN=CM\left(đpcm\right)\)

Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:a) Tam giác ABC cân ở Ab) O là trọng tâm của tam giác ABCBài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:a) Góc CEB= góc ADC và...
Đọc tiếp

Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:

a) Tam giác ABC cân ở A

b) O là trọng tâm của tam giác ABC


Bài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:

a) Góc CEB= góc ADC và Góc EBH= góc ACD

b) BE vuông góc BC

C) DF song song BE


Bài 7: Cho tam giác ABC vuông tại A, có AC=12cm, BC-13cm. Gọi I là trung điểm của BC. Trên tia AI lấy điểm K sao cho IA=IK

a) Tính AB

b)Chứng minh rằng: Tam giác IAB= tam giác IKC, từ đó suy ra tam giác ACK là tam giác vuông

c) Gọi điểm M là trung điểm của AC.Chứng minh: MB=MK

d) MK cắt BC tại N,BM cắt AI tại E. Chứng minh: tam giác MEN cân;EN song song BK


Bài 8: Cho tam giác ABC vuông tại A, có AB= 8cm, BC= 17cm

a) Tính AC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh: Góc DBC= góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BEC vuông. Suy ra DF là phân giác của góc ADE

d) Chứng minh: BE vuông góc với FC

1
2 tháng 5 2016

dài thế bạn.

đọc xong  đề bài mình ngủ luôn

21 tháng 1 2022

Câu a)
Xét tam giác MNO và tam giác HNO có :
NO : chung
MN = NH ( GT )
góc MNO = góc ONH ( do NO là phân giác góc MNP )
=> tam giác MNO = tam giác HNO ( cgc )
=> góc NMO = góc OHN ( cặp góc tương ứng )
mà góc NMO = 90 độ ( GT )
=> góc OHN = 90 độ
=> OH vuông góc NP
Vậy....
Câu b)
Do tam giác MNO = tam giác HNO ( CM ở câu a )
=> MO = OH
Xét tam giác MOK và tam giác HOP có :
góc OMK = góc OHP ( = 90 độ )
MO = HO ( CMT )
góc MOK = góc HOP ( 2 góc đối đỉnh )
=> tam giác MOK = tam giác HOP ( gcg )
=> OK = OP

Câu c)
Do tam giác MNO = tam giác HNO ( CM ở câu a)
=> góc NOM = góc NOH ( cặp góc tương ứng ) 
Mà góc NOM = góc IOP ( 2 góc đối đỉnh ) 
và  góc NOH = góc KOI ( 2 góc đối đỉnh ) 
=> góc KOI = góc POI 
Xét tam giác KOI và tam giác POI có :
OK =PO ( CM ở câu b )
OI : chung
góc KOI = góc POI ( CMT )
=> tam giác KOI = tam giác POI ( cgc )
=> KI = IP 
=> I là trung điểm KP 
Ta có : NM = NH ( GT )
Mà MK = HP ( do tam giác MOK = tam giác HOP )
=> MN + MK = HN + HP 
=> NK = NP 
=> tam giác NKP cân tại N
=> góc NKP = ( 180 độ - góc KNP )/2 
CMTT : góc NMH = ( 180 độ - góc MNH )/2 
Hay góc NMH = ( 180 độ - góc KNP )/2 
=> góc NKP = góc NMH 
Mà 2 góc ở vị trí đồng vị
=> MH // PK 

19 tháng 5 2022

Xét tam giác MNO và tam giác HNO có :
NO : chung
MN = NH ( GT )
góc MNO = góc ONH ( do NO là phân giác góc MNP )
=> tam giác MNO = tam giác HNO ( cgc )
=> góc NMO = góc OHN ( cặp góc tương ứng )
mà góc NMO = 90 độ ( GT )
=> góc OHN = 90 độ
=> OH vuông góc NP
Vậy....
Câu b)
Do tam giác MNO = tam giác HNO ( CM ở câu a )
=> MO = OH
Xét tam giác MOK và tam giác HOP có :
góc OMK = góc OHP ( = 90 độ )
MO = HO ( CMT )
góc MOK = góc HOP ( 2 góc đối đỉnh )
=> tam giác MOK = tam giác HOP ( gcg )
=> OK = OP

Câu c)
Do tam giác MNO = tam giác HNO ( CM ở câu a)
=> góc NOM = góc NOH ( cặp góc tương ứng ) 
Mà góc NOM = góc IOP ( 2 góc đối đỉnh ) 
và  góc NOH = góc KOI ( 2 góc đối đỉnh ) 
=> góc KOI = góc POI 
Xét tam giác KOI và tam giác POI có :
OK =PO ( CM ở câu b )
OI : chung
góc KOI = góc POI ( CMT )
=> tam giác KOI = tam giác POI ( cgc )
=> KI = IP 
=> I là trung điểm KP 
Ta có : NM = NH ( GT )
Mà MK = HP ( do tam giác MOK = tam giác HOP )
=> MN + MK = HN + HP 
=> NK = NP 
=> tam giác NKP cân tại N
=> góc NKP = ( 180 độ - góc KNP )/2 
CMTT : góc NMH = ( 180 độ - góc MNH )/2 
Hay góc NMH = ( 180 độ - góc KNP )/2 
=> góc NKP = góc NMH 
Mà 2 góc ở vị trí đồng vị
=> MH // PK 

6 tháng 4 2020

a) Xet tam giac MNK va tam giac MPK co:

Goc MKP = goc MKN = 90 do ( MK vuong goc voi NP )  (1)

MK ( canh chung )  (2)

MN = MP ( tam giac MNP can tai M )  (3)

Tu (1), (2), (3) => Tam giac MNK = tam giac MPK ( canh huyen - canh goc vuong )

b) Ta co: goc MNK = goc MPK ( 2 goc o day cua tam giac can MNP ) va 

goc MPK + goc MPB = 180 do ( ke bu ); goc MNK + goc MNA = 180 do ( ke bu )

ma goc MPK = goc MNK ( cmt ) => goc MPB = goc MNA

Xet tam giac MNA va tam giac MPB co:

PB = NA ( gt )  (1)

MP = MN ( tam giac MNP can tai M )  (2)

goc MPB = goc MNA ( cmt )  (3)

Tu (1), (2) ,(3) => tam giac MNA = tam giac MPB ( c.g.c )

=> MA = MB ( 2 canh tuong ung )

c) Ta co: DE // AB ma goc MDE va goc MAB la 2 goc dong vi => goc MDE = goc MAB

                                           MED            MBA                                       MED           MBA

Vay tam giac MDE la tam giac can ( tam giac MDE co 2 goc bang nhau )