K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMHN vuông tại H và ΔMHP vuông tại H có

MN=MP

MH chung

Do đó: ΔMHN=ΔMHP

b: Xét ΔIGM và ΔIEN có

IG=IE

\(\widehat{GIM}=\widehat{EIN}\)(hai góc đối đỉnh)

IM=IN

Do đó: ΔIGM=ΔIEN

=>\(\widehat{IGM}=\widehat{IEN}\)

=>MG//EN

 

4 tháng 12 2015

Nguyen Huu The làm trò này mãi k chán à?

3 tháng 5 2019

a, xét tam giác INM và tam giác IEM có : IM chung

góc INM = góc IEM = 90 d0....

góc NMI = góc EMI do MI là phân giác của góc NMP (gt)

=> tam giác INM = tam giác IEM (ch - gn)

=> IN = IE và MN = ME (đn)

Bạn có thể tham khảo ơn đây nhé :

https://olm.vn/hoi-dap/detail/238592362678.html

27 tháng 4 2022

M N P B A H I

a/

Xét tg MAH và tg BAN có

AM=AB (gt); AN=AH (gt)

\(\widehat{MAH}=\widehat{BAN}\) (góc đối đỉnh)

=> tg MAH = tg BAN (c.g.c)

b/

Ta có tg MAH = tg BAN (cmt) mà \(\Rightarrow\widehat{BNA=}\widehat{MHA}=90^o\)

Xét tg vuông BAN có AB>BN (trong tg vuông cạnh huyền là cạnh có số đo lớn nhất)

Mà AB=AM

=> AM>BN (1)

Xét tg vuông MAH có \(\widehat{MAH}\) là góc nhọn => \(\widehat{MAN}\) là góc tù

Xét tg MAN có MN>AM (trong tg cạnh đối diện với góc tù là cạnh có số đo lớn nhất) (2)

Từ (1) và (2) => MN>BN

Ta có tg MAH = tg BAN (cmt) => \(\widehat{NBM}=\widehat{AMH}\) (3)

Xét tg BMN có

MN>BN (cmt) => \(\widehat{NBM}>\widehat{NMA}\) (trong tg góc đối diện với cạnh có số đo lớn hơn thì lớn hơn góc đối diện với cạnh có số đo nhỏ hơn) (4)

Từ (3) và (4) => \(\widehat{AMH}>\widehat{NMA}\)

c/

Ta có \(\widehat{BNA}=90^o\left(cmt\right)\Rightarrow BN\perp NP\) (1)

Xét tg MNP có \(MH\perp NP\left(gt\right)\) => MH là đường cao

=> MH là đường trung tuyến của tg MNP (trong tg cân đường cao hạ từ đỉnh đồng thời là đường trung tuyến) => HN=HP

Mà IB=IP (gt)

=> IH là đường trung bình của tg BNP => IH//BN (2)

Từ (1) và (2) => \(IH\perp NP\) mà \(MH\perp NP\)

=> M; H; I thảng hàng (từ 1 điểm trên đường thẳng chỉ dựng được duy nhất 1 đường thẳng vuông góc với đường thẳng đã cho)

Xét tg INP có

\(IH\perp NP\) => IH là đường cao của tg INP

HN=HP (cmt) => IH là đường trung tuyến của tg INP

=> tg INP là tg cân tại I (trong tg đường cao đồng thời là đường trung tuyến thì tg đó là tg cân) => IN=IP (cạn bên tg cân)

Mà IP=IB (gt) và IP+IB=BP

=> IN=1/2BP