Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có xet tam giác CDB có
CM= MB ( m t điểm cb )
NM //BD
=> CN= CD
Lại có CM=MB và CN =CD => NM là đường tb tg CDB
=> NM=1/2 BD (2)
Xét tg ADB
AE=EB
FE//BD
=> AF=FD
Lại có AF=FD và AE=EB => FE là đường tb tg ADB
=> EF= 1/2 BD (1)
Từ 1,2 => Ef = MN
chỉnh sửa tí ạ"gọi I, K là lần lượt là trung điểm của HC và HB"
a) Ta có: CF = AF = AC / 2 (F là trung điểm của AC)
BE = AE = AB / 2 (E là trung điểm AB)
Mà AC = AB (tam giác ABC cân tại A)
=> AF = AE = CF = BE
=> tam giác AFE cân tại A (1)
Ta có: F, E lần lượt là trung điểm của AC, AB (gt)
=> FE là đường trung bình của tam giác ABC
=> FE // BC
Mà AI vuông góc với CB (AI là đường cao)
=> AI vuông góc với FE (2)
Từ (1), (2) => AI cũng là đường trung trực của FE (giải thích thêm: tính chất các đường thẳng từ đỉnh của tam giác cân)
=> E đối xứng với F qua AI (đpcm)
b) Xét tứ giác FEBC, có:
* EF // BC (cmt)
=> FEBC là hình thang
Mà FC = EB (cmt)
=> FEBC là hình thang cân
Xét tam giác FOC và tam giác EOB, có:
* FC = EB (cmt)
* góc CFO = góc BEO (FEBC là hình thang cân)
* FO = EO (E đối xứng với F qua O; O thuộc AI)
=> tam giác FOC = tam giác EOB (c.g.c)
=> góc FOC = góc EOB (yếu tố tương ứng)
Mà góc HOF, góc KOE lần lượt đối đỉnh với góc EOB và góc FOC
=> góc HOF = góc KOE
Xét tam giác HOF và tam giác KOE, có:
* góc HFO = góc KEO ( tam giác AFE cân tại A)
* FO = EO (E đối xứng với F qua AO)
* góc HOF = góc KOE (cmt)
=> tam giác HOF = tam giác KOE (g.c.g)
=> HF = KE (yếu tố tương ứng) (đpcm)
c) Xét tam giác HOK, có:
* OH = OK ( tam giác HFO = tam giác KEO)
=> tam giác HOK cân tại O
=> góc OHK = góc OKH (t/c)
Ta có: góc AOH + góc HOF = 90 độ (AI vuông góc FE)
góc AOK + góc KOE = 90 độ (AI vuông góc FE)
Mà góc HOF = góc KOE (cmt)
=> góc AOH = góc AOK
=> OA là phân giác của góc HOK
=> OA cũng là đường trung trực của tam giác cân OKH
=> OA vuông góc HK ( t/c)
Mà OA vuông góc FE ( AI vuông góc FE ; O thuộc AI)
=> HK // FE
Mà FE // CB (cmt)
=> HK // CB
=> HKBC là hình thang
Mà góc HCB = góc KBC ( tam giác ABC cân tại A; H thuộc AC; K thuộc AB)
=> HKBC là hình thang cân (đpcm)
+ Xét tg OMN có IM=IO và KN=KO => IK là đường trung bình của tg OMN => IK//MN
+ Xét hình thang IKNM có PI=PM và QK=QN => PQ là đường trung bình của hình thang IKNM => PQ//IK//MN
+ Xét tg IMN có PI=PM; PH//MN => PH là đường trung bình của tg IMN => PH=MN/2
+ Xét tg KMN chứng minh tương tự cũng có QJ=MN/2
=> PH+QJ=(PJ+JH)+(QH+JH)=PJ+QH+2JH=MN (*)
+ Xét tg MIK có PI=PM; PJ//IK => PJ là đường trung bình của tg MIK => PJ=IK/2
+ Xét tg NIK chững minh tương tự cũng có QH=IK/2
Thay PJ=QH=IK/2 vào (*)
=> PJ+QH+2JH=IK/2+IK/2+2JH=MN => IK+2JH=MN => JH=(MN-IK)/2
Bạn tự vẽ hình nha ==''
G là trung điểm của MN
H là trung điểm của MI
=> GH là đường trung bình của tam giác MNI
=> GH // NI
=> GHNI là hình thang
GH là đường trung bình của tam giác MNI
=> GH = NI : 2 = 3 : 2 = 1,5 (cm)
E là trung điểm của NI
H là trung điểm của MI
=> EH là đường trung bình của tam giác MNI
=> EH // MN
=> MHEN là hình thang
mà M = 900
=> MHEN là hình thang vuông
Chúc bạn học tốt ^^
a) Có: NG=MG(gt)
MH=HI(gt)
=>GH là đường trung bình của ΔMNI
b)=>GH//NI
=>tứ giác GHIN là hình thang
c) Có: GH là đg trung bình
=>GH=1/2NI=1/2.3=3/2
d) Có: NE=EI(gt)
MH=HI(gt)
=> HE là đg trung bình
=>HE//MN
=>MHEN là ht vuông