Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tg IMA và tg IMB có \(IA=IB;AM=MB;IM chung\) nên \(\Delta IMA=\Delta IMB\left(c.c.c\right)\)
Do đó \(\widehat{AIM}=\widehat{BIM}\)
Do đó IM là p/g góc AIB
b: Xét tứ giác ABDC có
I là trung điểm của BC
I là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB=CD
xét tam giác ABC có góc A+B+C=180
100+50+C=180
C=180-100-50=30
xét tam giác ABI và Dci
IA=ID (gt)
IB=IC (gt)
AIB=CID (đ.đỉnh)
Vậy tam giác ABI=DCI (c.g.c)
Vậy góc ABI=DCI (2gocs tưng ứng)
Xét tam giác MIB và NIC
B =ICD (cmt)
IB=IC (gt)
MIB=NIC (đ.đỉnh)
Vậy tan giác MIB=NIC (g.c.g)
vậy IM=IN (2 cạnh tương ứng)
vậy I là trung điểm của MN
xét tam giác ABC có góc A+B+C=180
100+50+C=180
C=180-100-50=30
xét tam giác ABI và Dci
IA=ID (gt)
IB=IC (gt)
AIB=CID (đ.đỉnh)
Vậy tam giác ABI=DCI (c.g.c)
Vậy góc ABI=DCI (2gocs tưng ứng)
Xét tam giác MIB và NIC
B =ICD (cmt)
IB=IC (gt)
MIB=NIC (đ.đỉnh)
Vậy tan giác MIB=NIC (g.c.g)
vậy IM=IN (2 cạnh tương ứng)
vậy I là trung điểm của MN
a) Xét ΔIAB và ΔICD có
IA=IC(I là trung điểm của AC)
\(\widehat{AIB}=\widehat{CID}\)(hai góc đối đỉnh)
IB=ID(gt)
Do đó: ΔIAB=ΔICD(c-g-c)
b) Ta có: ΔIAB=ΔICD(cmt)
nên AB=CD(hai cạnh tương ứng)
mà AB<BC(gt)
nên CD<BC
Xét ΔBCD có CD<BC(cmt)
mà góc đối diện với cạnh CD là góc DBC
và góc đối diện với cạnh BC là góc BDC
nên \(\widehat{DBC}< \widehat{BDC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
hay \(\widehat{IDC}>\widehat{IBC}\)
mà \(\widehat{IDC}=\widehat{IBA}\)(ΔIAB=ΔICD)
nên \(\widehat{IBA}>\widehat{IBC}\)(đpcm)
a: Ta có: ΔIAB cân tại I
mà IM là đường trung tuyến ứng với cạnh đáy AB
nên IM là đường cao ứng với cạnh AB