Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a/ Xét 2 tam giác BDE và CED có
BD=EC
DE chung
Góc BDE = góc DEC do chúng lần lượt bù với 2 góc bằng nhau là ADE và AED
=> dpcm (c.g.c)
b/ Có góc DKB bằng góc EKC do đối đỉnh
KD=KE
góc BDK=góc CEK
Vậy tam giác BOD = tam giác COE

A B C D E O
a/ Xét tam giác ABE và tam giác ACD có :
AD = AE , góc A là góc chung của hai tam giác , AB = AC
=> tam giác ABE = tam giác ACD => CD = BE
b/ Dễ dàng chứng minh đc tam giác BED = tam giác CDE (c.c.c)
=> góc CED = góc CDE => tam giác ODE cân tại O => OD = OE (1)
Lại có BE = CD => OB = OC (2) ; góc BOD = góc EOC (đối đỉnh) (3)
Từ (1) , (2) , (3) suy ra tam giác BOD = tam giác OCE (c.g.c)

O B C A D E
a) Xét tam giác ABE và tam giác ACD:
có+AB=AC(gt)
+A: góc chung
+AD=AE(gt)
Vậy tam giác ABE=tam giác ACD(c.g.c)
=> BE=CD( 2 cạnh tương ứng )
b)
- Vì tam giác ABE=tam giác ACD(cmt)
nên: ABD=ACE( 2 góc tương ứng )
- Xét tam giác BOD và tam giác COE:
có:+ góc BOD=COE( đối đỉnh)
+AB=AC( tam giác ABC cân vì có 2 cạnh bên bằng nhau) mà AD=AE(gt)=>BD=CE
+góc ABE=ACD(cmt)
Vậy tam giác BOD=COE(g.c.g)
^...^
^_^

câu a dễ, ta cm 2 tg ABE và ADC bằng nhau ( c -g - c ) vì góc A chung, AB = AC và AD = AE
câu b ta cm tam giác DOB = EOC (g-c-g) vì DE = EC ( tụ cm ), góc ODB = OEC và góc ABE = ACD do 2 tam giác ABE = ADC bằng nhau ở trên
A B C O
CM: a) Xét t/giác ABE và t/giác ACD
có: AE = AD (Gt)
\(\widehat{A}\) : chung
AB = AC (gt)
=> t/giác ABE = t/giác ACD (c.g.c)
=> BE = CD (2 cạnh t/ứng)
b) Ta có: AD + DB = AB (D thuộc AB)
AE + EC = AC (E thuộc AC)
mà AD = AE (gt); AB = AC(gt)
=> AB = EC
Ta lại có: \(\widehat{ADC}+\widehat{CDB}=180^0\) (kề bù)
\(\widehat{AEB}+\widehat{BEC}=180^0\) (kề bù)
mà \(\widehat{ADC}=\widehat{AEB}\) (vì t/giác ABE = t/giác ACD)
=> \(\widehat{BDC}=\widehat{BEC}\) hay \(\widehat{ODB}=\widehat{OEC}\)
Xét t/giác BOD và t/giác COE
có: \(\widehat{BDO}=\widehat{OEC}\) (cmt)
DB = EC (cmt)
\(\widehat{BDO}=\widehat{ECO}\) (vì t/giác ABE = t/giác ACD)
=> t/giác BOD = t/giác COE (g.c.g)
Xem lại đề câu a