Cho tam giác f x = a x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2016

a/ f(x) = 0 => x2 + 4x - 5 = 0 => (x - 1)(x + 5) = 0 => x = 1 hoặc x = -5

      Vậy x = 1 , x = -5

b/ f(x) > 0 => x2 + 4x - 5 > 0 => (x - 1)(x + 5) > 0 => x - 1 > 0 và x + 5 > 0 => x > 1 và x > -5 => x > 1 

                                                                          hoặc x - 1 < 0 và x + 5 < 0 => x < 1 và x < -5 => x < -5

      Vậy x > 1 hoặc x < -5

c/ f(x) < 0 => x2 + 4x - 5 < 0 => (x - 1)(x + 5) < 0 => x - 1 > 0 và x + 5 < 0 => x > 1 và x < -5 => vô lí

                                                                          hoặc x - 1 < 0 và x + 5 > 0 => x < 1 và x > -5 => -5 < x < 1

      Vậy -5 < x < 1

24 tháng 3 2016

Đặt \(A=\left|x-2\right|+\left|x-3\right|\)

Ta có:

\(\left|x-3\right|=\left|3-x\right|\)

\(\Rightarrow A=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1\)

Do đó 1 chính là giá trị nhỏ nhất của A

Dấu "=" xảy ra khi \(\left(x-2\right)\left(3-x\right)\ge0\)

Ta có bảng xét dấu sau:

x x-2 3-x (x-2)(3-x) 2 3 0 0 + + + + + 0 0 _ _ _ _

\(\Rightarrow2\le\)\(x\le\)\(3\)

\(\Rightarrow x\in\left\{2;3\right\}\)

Vậy \(x\in\left\{2;3\right\}\)

 

 

 

21 tháng 3 2016

Ta có:

\(f\left(1\right).f\left(-1\right)=\left(a+b\right).\left(-a+b\right)\)

\(\Rightarrow\left(a+b\right)\left(-a+b\right)=\left(a+b\right)^2\)

\(\Rightarrow-a+b=a+b\)

\(\Rightarrow a=-a\)

\(a\ne0\) thì làm sao có a thỏa mãn được?

21 tháng 3 2016

Trần Thùy Dung ko biết thì đừng có làm. 5 - 3a - 3b = 5. Bài này trong violympic.

27 tháng 3 2016

Ta có:

\(f\left(x\right)=0\), do đó với mọi giá trị của x thì đa thức này bằng 0

Ta có:

\(f\left(1\right)=a.1^2+b.1+c=a+b+c=0\)

\(\Rightarrow a+b+c+3=0+3=3\)

Vậy  \(a+b+c=3\)

 

 

 

27 tháng 3 2016

a;b;c cho trc là sao?

10 tháng 6 2016

A=x

20 tháng 7 2016

a) A=x^2+2

b) mình nghĩ x thuộc tập hợp R

c)GTNN của A=1/4 khi x=1/2

26 tháng 2 2016

a) \(4x-7>0\Leftrightarrow4x>7\)\(\Leftrightarrow x>\frac{7}{4}\)

b) \(-5x+8>0\Leftrightarrow5x<8\Leftrightarrow x<\frac{8}{5}\)

c)\(9x-10\le0\Leftrightarrow9x\le10\)\(\Leftrightarrow x\le\frac{10}{9}\)

d) \(\left(x+1\right)^2+4\le x^2+3x+10\)\(\Leftrightarrow x^2-2x+1+4\le x^2+3x+10\)

                                           \(\Leftrightarrow5x\ge-5\Leftrightarrow x\ge-1\)

14 tháng 5 2018

a,

4x - 7 > 0

↔ 4x > 7

↔ x > \(\dfrac{7}{4}\)

Vậy tập nghiệm của bất phương trình là S = { x / x>\(\dfrac{7}{4}\) }

b,

-5x + 8 > 0

↔ 8 > 5x

\(\dfrac{8}{5}\) > x

Vậy tập nghiệm của bất phương trình là S = { x / \(\dfrac{8}{5}\) > x }

c,

9x - 10 ≤ 0

↔ 9x ≤ 10

↔ x ≤ \(\dfrac{10}{9}\)

Vậy tập nghiệm của bất phương trình là S = { x / x ≤ \(\dfrac{10}{9}\) }

d,

( x - 1 )\(^2\) + 4 ≤ x\(^2\) + 3x + 10

↔ x\(^2\) - 2x +1 +4 ≤ x\(^2\) + 3x + 10

↔ 1 + 4 - 10 ≤ x \(^2\) - x\(^2\) + 3x + 2x

↔ -5 ≤ 5x

↔ -1 ≤ x

Vậy tập nghiệm của bất phương trình là S = { x / -1 ≤ x}

16 tháng 2 2016

a) Ta có:

\(M\left(x\right)=A\left(x\right)-2.B\left(x\right)+C\left(x\right)\)

\(=\left(2x^5-4x^3+x^2-2x+2\right)-2.\left(x^5-2x^4+x^2-5x+3\right)+\left(x^4+3x^3+3x^2-8x+4\frac{3}{16}\right)\)

\(=2x^5-4x^3+x^2-2x+2-2x^5+4x^4-2x^2+10x-6+x^4+4x^3+3x^2-8x+\frac{67}{16}\)

\(=\left(2x^5-2x^5\right)+\left(4x^4+x^4\right)+\left(-4x^3+4x^3\right)+\left(x^2-2x^2+3x^2\right)+\left(-2x+10x-8x\right)+\left(2-6+\frac{67}{16}\right)\)

\(=0+5x^4+0+2x^2+0+\frac{3}{16}\)

\(=5x^4+2x^2+\frac{3}{16}\)

b) Thay  \(x=-\sqrt{0,25}=-0,5\); ta có:

\(M\left(-0,5\right)=5.\left(-0,5\right)^4+2.\left(-0,5\right)^2+\frac{3}{16}\)

\(=5.0,0625+2.0,25+\frac{3}{16}\)

\(=\frac{5}{16}+\frac{8}{16}+\frac{3}{16}=\frac{16}{16}=1\)

c) Ta có:

\(x^4\ge0\) với mọi x

\(x^2\ge0\) với mọi x

\(\Rightarrow5x^4+2x^2+\frac{3}{16}>0\) với mọi x

Do đó không có x để M(x)=0