Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Tứ giác ABDC có:
M là trung điểm của BC (gt)
M là trung điểm của AD (gt)
⇒ ABDC là hình bình hành
Mà ∠BAC = 90⁰ (∆ABC vuông tại A)
⇒ ABDC là hình chữ nhật
b) Do ABDC là hình chữ nhật (cmt)
⇒ CD = AB (1)
Do B là trung điểm của AE (gt)
⇒ BE = AB = AE : 2 (2)
Từ (1) và (2) ⇒ CD = BE
Do ABDC là hình chữ nhật (cmt)
⇒ CD // AB
⇒ CD // BE
Tứ giác BEDC có:
CD // BE (cmt)
CD = BE (cmt)
⇒ BEDC là hình bình hành
c) Do ABDC là hình chữ nhật (cmt)
⇒ AC // BD
Do đó AC, BD, EK đồng quy là vô lý
Em xem lại đề nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Vì EF là đường trung bình tg ABC nên EF//BC
Do đó BEFC là hình thang
Mà \(\widehat{ABC}=\widehat{ACB}\) (tg ABC cân tại A)
Vậy BEFC là hình thang cân
b, Ta có EF là đtb tg ABC nên \(EF=\dfrac{1}{2}BC\)
Mà \(EF=\dfrac{1}{2}MF\) (E là trung điểm MF) nên \(BC=MF\)
Mà EF//BC nên MF//BC
Do đó BMFC là hbh
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét ∆CMA và ∆BMD:
Góc CMA= góc BMD (đối đỉnh)
MA=MD (gt)
MC=MB (M là trung điểm BC)
=> ∆CMA=∆BMD(c.g.c)
=> góc CAM = góc BDM và CA=DB
Mà 2 góc CAM và góc BDM nằm ở vị trí so lo trong nên CA//DB
=> CABD là hình bình hành
Lại có góc CAB = 90 độ (gt)
=> ACDB là hình chữ nhật
b) Vì E là điểm đối xứng của C qua A nên EAB=90độ=DBA
Mà 2 góc này ở bị trí so le trong nên AE//DB
Lại có AE=BD(=CA)
=> AEBD là hình bình hành
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét tứ giác AHCE có
I là trung điểm chung của AC và HE
góc AHC=90 độ
=>AHCE là hình chữ nhật
b: Xét ΔAHC có
HI,AM là trung tuyến
HI cắt AM tại G
=>G là trọng tâm
=>HG=2/3HI=2/3*1/2*HE=1/3HE
Xét ΔCAE có
AN,EI là trung tuyến
AN cắt EI tại K
=>K là trọng tâm
=>EK=2/3EI=1/3EH
HG+GK+KE=HE
=>GK=HE-1/3HE-1/3HE=1/3HE
=>HG=GK=KE
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét tứ giác ABEC có
M là trung điểm của đường chéo BC
M là trung điểm của đường chéo AE
Do đó: ABEC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABEC là hình chữ nhật
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABF vuông tại B và ΔADE vuông tại D có
AB=AD
BF=DE
Do đó: ΔABF=ΔADE
=>\(\widehat{BAF}=\widehat{DAE}\)
mà \(\widehat{DAE}+\widehat{EAB}=90^0\)
nên \(\widehat{BAF}+\widehat{BAE}=90^0\)
=>\(\widehat{FAE}=90^0\)
Ta có: ΔABF=ΔADE
=>AF=AE
Xét ΔAFE có AF=AE và \(\widehat{FAE}=90^0\)
nên ΔAFE vuông cân tại A
b: Bạn ghi lại đề đi bạn
![](https://rs.olm.vn/images/avt/0.png?1311)
A C B H M D E F I J
a) Xét tứ giác AHBD có MB = MA; MD = MH nên nó là hình bình hành (dhnb).
Lại có \(\widehat{BHA}=90^o\) nên AHBD là hình chữ nhật (dhnb).
b) Do AHBD là hình chữ nhật nên AD song song và bằng HB.
Lại có HB = HE nên AD song song và bằng HE.
Xét tứ giác ADHE có AD song song và bằng HE nên nó là hình bình hành (dhnb)
c) Lấy J là trung điểm AF.
Do AB và EF cùng vuông góc với AC nên BAFE là hình thang vuông.
Lại có H, J là trung điểm các cạnh bên nên HJ là đường trung bình của hình thang.
Vậy nên HJ // AB // EF hay \(HJ\perp AF\)
Xét tam giác AHF có HJ là trung tuyến đồng thời đường cao nên nó là tam giác cân.
Vậy thì HA = HF.
d) Xét tam giác vuông EFC có FI là trung tuyến ứng với cạnh huyền nên FI = IC hay \(\widehat{IFC}=\widehat{ICF}\)
Lại có \(\widehat{ICF}=\widehat{BAH}\) (Cùng phụ với góc HAC)
Nên \(\widehat{IFC}=\widehat{BAH}\)
Ta cũng có \(\widehat{HFE}=\widehat{JHF}\) (Hai góc so le trong)
\(\widehat{JHF}=\widehat{JHA}\) (HJ là phân giác)
\(\widehat{JHA}=\widehat{BAH}\) (Hai góc so le trong)
nên \(\widehat{HFE}=\widehat{BAH}\)
Vậy thì \(\widehat{IFC}=\widehat{HFE}\)
Từ đó ta có : \(\widehat{IFC}+\widehat{EFI}=\widehat{HFE}+\widehat{EFI}\Rightarrow\widehat{HFI}=\widehat{EFC}=90^o\)
Hay \(HF\perp FI\)
Xét tứ giác EIFG có
H là trung điểm của EF
H là trung điểm của IG
Do đó: EIFG là hình bình hành