K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2020

chotamgiacabc

gggfffffffffffffffffffffffffwuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuueahhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhgggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg

20 tháng 3 2022

`Answer:`

undefined

a. Theo giả thiết: EI//AF

`=>\hat{EIB}=\hat{ACB}=\hat{ABC}=\hat{EBI}` (Do `\triangleABC` cân ở `A`)

`=>\triangleEBI` cân ở `E`

`=>EB=EI`

b. Theo giải thiết: BE=CF=>EI=CF`

Xét `\triangleOEI` và `\triangleOCF:`

`EI=CF`

`\hat{OEI}=\hat{OFC}` 

`\hat{OIE}=\hat{OCF}`

`=>\triangleOEI=\triangleOFC(g.c.g)`

`=>OE=OF`

c. Ta có: `KB⊥AB` và `KC⊥AC`

`=>KB^2=KA^2-AB^2=KA^2-AC^2=KC^2`

`=>KB=KC`

Mà `BE=CF`

`=>KE^2=KB^2+BE^2=KC^2+CF^2=KF^2`

`=>KE=KF`

`=>\triangleEKF` cân ở `K`

Mà theo phần b. `OE=OF=>O` là trung điểm `EF`

`=>OK⊥EF`

31 tháng 1 2022

a) Xét \(\Delta ADB\) và \(\Delta AEC\) có:

\(AB=AC\) (do \(\Delta ABC\) cân tại \(A\))

\(\widehat{ABD}=\widehat{ACE}\)

\(BD=CE\) (giả thiết)

\(\Rightarrow\Delta ADB=\Delta AEC\left(c.g.c\right)\)

\(\Rightarrow AD=AE\) (\(2\) cạnh tương ứng)

\(\Rightarrow\Delta ADE\) cân tại \(A\)

b) Vì \(\Delta ADE\) cân tại \(A\)

\(\Rightarrow\widehat{ADB}=\widehat{ACE}\) (\(2\) góc tương ứng)

Ta có: \(\left\{{}\begin{matrix}\widehat{ADB}+\widehat{HBD}=90^o\\\widehat{ACE}+\widehat{KCE}=90^o\end{matrix}\right.\) (\(2\) góc phụ nhau)

Từ hai điều trên \(\Rightarrow\widehat{HBD}=\widehat{KCE}\)

Mà \(\left\{{}\begin{matrix}\widehat{HBD}=\widehat{CBI}\\\widehat{KCE}=\widehat{BCI}\end{matrix}\right.\) (\(2\) góc đối đỉnh)

Từ đó \(\Rightarrow\widehat{CBI}=\widehat{BCI}\)

\(\Rightarrow\Delta BIC\) cân tại \(I\)

c) Xét \(\Delta ABI\) và \(\Delta ACI\) có:

\(AB=AC\) (giả thiết)

\(BI=CI\) (do \(\Delta BIC\) cân tại \(I\))

\(AI\) là cạnh chung

\(\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)\)

\(\Rightarrow\widehat{AIB}=\widehat{AIC}\) (\(2\) góc tương ứng)

\(\Rightarrow AI\) là tia phân giác \(\widehat{BIC}\)

a; Xét ΔABD và ΔACE có 

AB=AC
\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: AD=AE

hay ΔADE cân tại A

b: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có

BD=CE
\(\widehat{D}=\widehat{E}\)

Do đó: ΔHBD=ΔKCE
Suy ra: \(\widehat{HBD}=\widehat{KCE}\)

hay \(\widehat{IBC}=\widehat{ICB}\)

hay ΔIBC cân tại I

8 tháng 1 2018

B C A D E M N I H K

a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\)  (Hai góc đối đỉnh)

Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)

Xét tam giác vuông BDM và CEN có:

BD = CE

\(\widehat{ECN}=\widehat{DBM}\)  (cmt)

\(\Rightarrow\Delta BDM=\Delta CEN\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow BM=CN\)   (Hai cạnh tương ứng)

b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)

Ta thấy MD và NE cùng vuông góc BC nên MD // NE 

Suy ra \(\widehat{DMI}=\widehat{ENI}\)   (Hai góc so le trong)

Xét tam giác vuông MDI và NEI có:

MD = NE

\(\widehat{DMI}=\widehat{ENI}\)

\(\Rightarrow\Delta MDI=\Delta NEI\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow MI=NI\)

Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.

c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\)    (1)  và BK = CK

Xét tam giác BMK và CNK có:

BM = CN (cma)

MK = NK (cmb)

BK = CK (cmt)

\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\)   (2)

Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)

Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)

Vậy \(KC\perp AN\)

16 tháng 9 2018

dvdtdhnsrthwsrh