Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N P I H O
a) MP // AC => ^MPB=^CAB; ^PMB=^ACB. Mà ^CAB=^ACB=600
=> ^MPB=^PMB=600 => Tam giác BPM là tam giác đều (đpcm).
b) Tam giác BPM là tam giác đều (cmt) => PM=BP
Ta có: PM//AN; M//AP => PM=AN (Tính chất đoạn chắn)
=> BP=AN.
Tam giác ABC đều và O là trọng tâm nên ta có: ^OBA=^OAC=300 hay ^OBP=^OAN và OB=OA
Xét tam giác OAN và tam giác OBP: BP=AN; OA=OB; ^OAN=^OBP
=> Tam giác OAN= Tam giác OBP (đpcm)
c) Tam giác AIP=Tam giác MIN (g.c.g) => IP=IN hay I là trung điểm của NP
Tam giác OAN=Tam giác OBP (cmt) => ON=OP => O nằm trên trung trực của NP (1)
HP=HN => H nằm trên trung trực của NP (2)
Từ (1) và (2) kết hợp với I là trung điểm của NP => H;I;O thẳng hàng (đpcm).
Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath
A B C D E F
* Xét tam giác BDE và tam giác EFB có:
+) \widehat{DEB} = \widehat{EBF} ( so le trong)
+) BE chung
+) \widehat{FEB} = \widehat{DBE} ( so le trong)
=> Tam giác BDE = tam giác EFB ( g.c.g )
=> EF = BD ( 2 cạnh tương ứng)
* Mà AD = BD ( D là trung điểm của AB)
=> EF = AD. ( cpcm)
vì AM là tia phân giác đồng thời là tia phân giác của \(\widehat{DAE}\)
⇒ΔADE cân tại E
⇒\(\widehat{D}=\widehat{AED}\)(1)
vì BF \\ CA ( GT )
⇒ \(\widehat{BFD}=\widehat{AED}\)(2 góc đồng vị bằng nhau)(2)
từ (1) và (2) ⇒ \(\widehat{D}=\widehat{AFD}\)
⇒ΔBDF cân tại B
tui ko quen kẻ hình trên máy tính
vì AC \\ BF (câu a)
⇒\(\widehat{FBM}=\widehat{ECM}\)(2 góc so le trong)
xét ΔBMF và ΔCME có
\(\widehat{FBM}=\widehat{ECM}\)(CMT)
\(\widehat{BMF}=\widehat{CME}\)(2 góc đối đỉnh)
BM = MC(M là trung điểm của BC)
⇒ΔBMF=ΔCME(G.C.G)
⇒EM=FM(2 cạnh tương ứng)
⇒M là trung điểm của FE