Cho tam giác đều ABC nội tiếp đường tròn (O). Các đường thẳng BO và CO lần lượt cắt đườn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2022

1. Do ΔABC đều, BE và CF là tia phân giác của góc B, góc C nên ∠B1 = ∠B2 = ∠C1 = ∠C2 ⇒ AE   =    AF   =   BF   =   CE

∠FAB  = ∠B1   => AF//BE

2. (1,0 điểm)

Tương tự câu 1) ta có AE//CF nên tứ giác AEOF là hình bình hành mà →AE = AF => →AE = AF  nên tứ giác AEOF là hình thoi.

DOFN và DAFM có ∠FAE = ∠FOE  (2 góc đối của hình thoi)

∠AFM = ∠FNO  (2 góc so le trong)

=> ΔAFM đồng dạng với ΔONF (g-g)

⇒ AF/ON = AM/OF ⇔ AF.OF = AM.ON
mà AF = OF nên AF² = AM.ON

3. (1,0 điểm)

Có ∠AFC = ∠ABC = 600  và AEOF là hình thoi => ΔAFO và ΔAEO là các tam giác đều => AF=DF=AO

=> AO² = AM.MO

⇔ AM/AO = AO/ON và có ∠OAM = ∠AOE = 600 =>  ΔAOM và  ΔONA đồng dạng.

=> ∠AOM = ∠ONA

Có 60º = ∠AOE = ∠AOM + ∠GOE = ∠ANO + GAE
=> ∠GAE = ∠GOE
mà hai góc cùng nhìn GE nên tứ giác AGEO nội tiếp

1. Do ΔABC đều, BE và CF là tia phân giác của góc B, góc C nên ∠B1 = ∠B2 = ∠C1 = ∠C2 ⇒ AE   =    AF   =   BF   =   CE

∠FAB  = ∠B1   => AF//BE

2. (1,0 điểm)

Tương tự câu 1) ta có AE//CF nên tứ giác AEOF là hình bình hành mà →AE = AF => →AE = AF  nên tứ giác AEOF là hình thoi.

DOFN và DAFM có ∠FAE = ∠FOE  (2 góc đối của hình thoi)

∠AFM = ∠FNO  (2 góc so le trong)

=> ΔAFM đồng dạng với ΔONF (g-g)

⇒ AF/ON = AM/OF ⇔ AF.OF = AM.ON
mà AF = OF nên AF² = AM.ON

3. (1,0 điểm)

Có ∠AFC = ∠ABC = 600  và AEOF là hình thoi => ΔAFO và ΔAEO là các tam giác đều => AF=DF=AO

=> AO² = AM.MO

⇔ AM/AO = AO/ON và có ∠OAM = ∠AOE = 600 =>  ΔAOM và  ΔONA đồng dạng.

=> ∠AOM = ∠ONA

Có 60º = ∠AOE = ∠AOM + ∠GOE = ∠ANO + GAE
=> ∠GAE = ∠GOE
mà hai góc cùng nhìn GE nên tứ giác AGEO nội tiếp

Mk vẽ hình r nhưng ko bít đăng ! 

21 tháng 6 2021

A B C E F N M O D G

1. Vì \(\widehat{ADB}=\widehat{AEB}=90^0\) nên tứ giác AEBD nội tiếp đường tròn đường kính AB.

2. Tứ giác AEBD, AFCD nội tiếp và BE, CF tiếp xúc (O), suy ra:

\(\widehat{AED}=\widehat{ABC}=\widehat{ACF}=\widehat{ADF};\widehat{AFD}=\widehat{ADE}\)

Do đó \(\Delta\)EAD ~ \(\Delta\)DAF, suy ra \(AD^2=AE.AF\)

3. Ta có \(AE.AF=\left(AM+AN\right)^2=\frac{\left(AE+AF\right)^2}{4}\Leftrightarrow\left(AE-AF\right)^2=0\Leftrightarrow AE=AF\)

Từ đó \(\Delta\)AEG = \(\Delta\)AFG (Cạnh huyền.Cạnh góc vuông), suy ra GA là phân giác góc BGC

Mà \(\Delta\)GBC cân tại G nên GA là trung trực BC hay \(\Delta\)ABC cân tại A

Vậy đường cao AD trùng với AO hay A,O,D thẳng hàng.

25 tháng 5 2018

a,ta có góc MAB=90°; MNB=90°(gt);(góc nội tiếp chắn 1/2đtròn)

xét tứ giác AMNB có góc MAN+MNB=90°+90°=180°

suy ra AMNB nội tiếp

b, ta có góc CAB=90°(gt); CPB=90°( góc nội tiếp chắn 1/2đtròn)

xét tứ giác CPAB có góc CAB=CPB=90°

suy ra CPAB nội tiếp ( hai góc bằng nhau cùng chắn cung CB)

suy ra góc BCA=BPA(1)

góc PBA=PCA(2)

mà góc MPN=ACB=1/2sđcung MN(3)

góc PCA=PNM=1/2sđcung PM(4)

từ 1,3 suy ra góc ACB=MPN

từ 2,4 suy ra góc PNM=PBA

xét hai tam giác PAB và PMN có 

góc APB=MPN(cmt)

góc PNM=PBA(cmt)

suy ra hai tam giác đó đồng dạng (đpcm)

c, ta có góc PDN=PCN=1/2sđ cung PN(1)

góc PAC=PBC(CPAB nội tiếp)(2)

mà góc PBC+PCB=90°(3)

từ 1,2,3 suy ra góc DAC+ADE=90°

suy ra DN vuông với AC

xét hai tam giác PCM và ECG có góc C chung

góc CEG=CPM=90°

suy ra hai tam giác đó đồng dạng

suy ra PC/EC=CM/CG

suy ra PC.CG=EC.CM(đpcm)