Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Do ΔABC đều, BE và CF là tia phân giác của góc B, góc C nên ∠B1 = ∠B2 = ∠C1 = ∠C2 ⇒ AE = AF = BF = CE
∠FAB = ∠B1 => AF//BE
2. (1,0 điểm)
Tương tự câu 1) ta có AE//CF nên tứ giác AEOF là hình bình hành mà →AE = AF => →AE = AF nên tứ giác AEOF là hình thoi.
DOFN và DAFM có ∠FAE = ∠FOE (2 góc đối của hình thoi)
∠AFM = ∠FNO (2 góc so le trong)
=> ΔAFM đồng dạng với ΔONF (g-g)
⇒ AF/ON = AM/OF ⇔ AF.OF = AM.ON
mà AF = OF nên AF² = AM.ON
3. (1,0 điểm)
Có ∠AFC = ∠ABC = 600 và AEOF là hình thoi => ΔAFO và ΔAEO là các tam giác đều => AF=DF=AO
=> AO² = AM.MO
⇔ AM/AO = AO/ON và có ∠OAM = ∠AOE = 600 => ΔAOM và ΔONA đồng dạng.
=> ∠AOM = ∠ONA
Có 60º = ∠AOE = ∠AOM + ∠GOE = ∠ANO + GAE
=> ∠GAE = ∠GOE
mà hai góc cùng nhìn GE nên tứ giác AGEO nội tiếp
1. Do ΔABC đều, BE và CF là tia phân giác của góc B, góc C nên ∠B1 = ∠B2 = ∠C1 = ∠C2 ⇒ AE = AF = BF = CE
∠FAB = ∠B1 => AF//BE
2. (1,0 điểm)
Tương tự câu 1) ta có AE//CF nên tứ giác AEOF là hình bình hành mà →AE = AF => →AE = AF nên tứ giác AEOF là hình thoi.
DOFN và DAFM có ∠FAE = ∠FOE (2 góc đối của hình thoi)
∠AFM = ∠FNO (2 góc so le trong)
=> ΔAFM đồng dạng với ΔONF (g-g)
⇒ AF/ON = AM/OF ⇔ AF.OF = AM.ON
mà AF = OF nên AF² = AM.ON
3. (1,0 điểm)
Có ∠AFC = ∠ABC = 600 và AEOF là hình thoi => ΔAFO và ΔAEO là các tam giác đều => AF=DF=AO
=> AO² = AM.MO
⇔ AM/AO = AO/ON và có ∠OAM = ∠AOE = 600 => ΔAOM và ΔONA đồng dạng.
=> ∠AOM = ∠ONA
Có 60º = ∠AOE = ∠AOM + ∠GOE = ∠ANO + GAE
=> ∠GAE = ∠GOE
mà hai góc cùng nhìn GE nên tứ giác AGEO nội tiếp
Mk vẽ hình r nhưng ko bít đăng !
A B C E F N M O D G
1. Vì \(\widehat{ADB}=\widehat{AEB}=90^0\) nên tứ giác AEBD nội tiếp đường tròn đường kính AB.
2. Tứ giác AEBD, AFCD nội tiếp và BE, CF tiếp xúc (O), suy ra:
\(\widehat{AED}=\widehat{ABC}=\widehat{ACF}=\widehat{ADF};\widehat{AFD}=\widehat{ADE}\)
Do đó \(\Delta\)EAD ~ \(\Delta\)DAF, suy ra \(AD^2=AE.AF\)
3. Ta có \(AE.AF=\left(AM+AN\right)^2=\frac{\left(AE+AF\right)^2}{4}\Leftrightarrow\left(AE-AF\right)^2=0\Leftrightarrow AE=AF\)
Từ đó \(\Delta\)AEG = \(\Delta\)AFG (Cạnh huyền.Cạnh góc vuông), suy ra GA là phân giác góc BGC
Mà \(\Delta\)GBC cân tại G nên GA là trung trực BC hay \(\Delta\)ABC cân tại A
Vậy đường cao AD trùng với AO hay A,O,D thẳng hàng.
a,ta có góc MAB=90°; MNB=90°(gt);(góc nội tiếp chắn 1/2đtròn)
xét tứ giác AMNB có góc MAN+MNB=90°+90°=180°
suy ra AMNB nội tiếp
b, ta có góc CAB=90°(gt); CPB=90°( góc nội tiếp chắn 1/2đtròn)
xét tứ giác CPAB có góc CAB=CPB=90°
suy ra CPAB nội tiếp ( hai góc bằng nhau cùng chắn cung CB)
suy ra góc BCA=BPA(1)
góc PBA=PCA(2)
mà góc MPN=ACB=1/2sđcung MN(3)
góc PCA=PNM=1/2sđcung PM(4)
từ 1,3 suy ra góc ACB=MPN
từ 2,4 suy ra góc PNM=PBA
xét hai tam giác PAB và PMN có
góc APB=MPN(cmt)
góc PNM=PBA(cmt)
suy ra hai tam giác đó đồng dạng (đpcm)
c, ta có góc PDN=PCN=1/2sđ cung PN(1)
góc PAC=PBC(CPAB nội tiếp)(2)
mà góc PBC+PCB=90°(3)
từ 1,2,3 suy ra góc DAC+ADE=90°
suy ra DN vuông với AC
xét hai tam giác PCM và ECG có góc C chung
góc CEG=CPM=90°
suy ra hai tam giác đó đồng dạng
suy ra PC/EC=CM/CG
suy ra PC.CG=EC.CM(đpcm)