K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDEF vuông tại E cso EH là đường cao

nên \(EH\cdot DF=ED\cdot EF\)(hệ thức lượng)

\(DF=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(EH=\dfrac{ED\cdot EF}{DF}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

b: Xét ΔEHD vuông tại H có HM là đường cao

nên \(EM\cdot ED=EH^2\left(1\right)\)

Xét ΔEHF vuông tại H có HN là đường cao

nên \(EN\cdot EF=EH^2\left(2\right)\)

Từ (1) và (2) suy ra \(EM\cdot ED=EN\cdot EF\)

hay EM/EF=EN/ED

Xét ΔEMN vuông tại E và ΔEFD vuông tại E có

EM/EF=EN/ED

Do đó ΔEMN\(\sim\)ΔEFD

a: \(S_{DEF}=\dfrac{EH\cdot DF}{2}=\dfrac{ED\cdot EF}{2}\)

nên \(EH\cdot DF=ED\cdot EF\)

b: \(DF=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(EH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

c: Xét ΔDEF vuông tại E có EH là đường cao

nên \(EF^2=DF\cdot HF\)

d: Xét ΔEHD vuông tại H có HM là đường cao

nên \(EM\cdot ED=EH^2\left(1\right)\)

Xét ΔEHF vuông tại H có HN là đường cao

nên \(EN\cdot EF=EH^2\left(2\right)\)

Từ (1) và (2) suy ra \(EM\cdot ED=EN\cdot EF\)

hay EM/EF=EN/ED

Xét ΔEMN và ΔEFD có

EM/EF=EN/ED

góc MEN chung

Do đo: ΔEMN đồng dạng với ΔEFD

3 tháng 5 2020

E D F H K M N I

Bài làm

a) Xét tam giác DEH và tam giác DEF có:

\(\widehat{DHE}=\widehat{DEF}\left(=90^0\right)\)

\(\widehat{D}\) chung

=> Tam giác DEH ~ Tam giác DEF ( g - g )

=> \(\frac{DE}{DF}=\frac{HE}{EF}\)

\(\Rightarrow DE.EF=DF.EH\) ( đpcm )

b) Xét tam giác DEF vuông tại E có:

DF2 = DE2 + EF2

hay DF2 = 152 + 202

=> DF2 = 225 + 400

=> DF2 = 625

=> DF = 25 ( cm )

Vì tam giác DEH ~ Tam giác DEF ( cmt )

=> \(\frac{DH}{DE}=\frac{DE}{DF}\)

hay \(\frac{DH}{15}=\frac{15}{25}\Rightarrow DH=9\left(cm\right)\)

Ta có: DH + HF = DF

hay 9 + HF = 25

=> HF = 16 ( cm )

c) Xét tam giác HEF và tam giác EDF có:

\(\widehat{EHF}=\widehat{DEF}\left(=90^0\right)\)

\(\widehat{F}\) chung

=> Tam giác HEF ~ Tam giác EDF ( g - g )

=> \(\frac{EF}{DF}=\frac{HF}{EF}\Rightarrow EF^2=DF.HF\) ( đpcm )

Câu 1: 

a: \(S_{EDF}=\dfrac{EH\cdot DF}{2}=\dfrac{ED\cdot EF}{2}\)

nên \(EH\cdot DF=ED\cdot EF\)

\(DF=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(EH=\dfrac{ED\cdot EF}{FD}=12\left(cm\right)\)

b: Xét ΔEHD vuông tại H có HM là đường cao

nên \(EM\cdot ED=EH^2\left(1\right)\)

Xét ΔEHF vuông tại H có HN là đường cao

nên \(EN\cdot EF=EH^2\left(2\right)\)

Từ (1) và (2) suy ra \(EM\cdot ED=EN\cdot EF\)

hay EM/EF=EN/ED

=>ΔEMN\(\sim\)ΔEFD

15 tháng 5 2021

a) xét ΔHED và ΔDEF có 

\(\widehat{EHD}=\widehat{EDF}=\)90o

\(\widehat{E} chung\)

=> ΔHED ∼ ΔDEF (gg)

b) Xét ΔDEF có \(\widehat{D}=\)90o

=> DE2+DF2=EF2

=>62+82=EF2

=> EF=10 cm

SΔDEF=\(\dfrac{ED.DF}{2}=\dfrac{DH.EF}{2}\)=> ED.DF=DH.EF => 6.8=DH.10

=> DH =4,8 cm

c) Xét ΔDEH có \(\widehat{EHD}=90\)o

=> HD2.HE2=ED2

=>4.82+HE2=62

=> HE=3.6

ta lại có DI là phân giác 

=> \(\dfrac{EI}{IH}=\dfrac{ED}{HD}\)

=>\(\dfrac{EI}{EH-EI}=\dfrac{6}{4.8} \)=>\(\dfrac{EI}{3.6-EI}=\dfrac{6}{4.8}\)=>EI=2

=> IH=EH-EI=3.6-2=1.6

a) Xét ΔHED vuông tại H và ΔDEF vuông tại D có

\(\widehat{HED}\) chung

Do đó: ΔHED\(\sim\)ΔDEF(g-g)

a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xet ΔEDF có EK là phân giác

nên DK/DE=FK/FE

=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1

=>DK=3cm; FK=5cm

b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có

góc DEK=góc HEI

=>ΔDEK đồng dạng với ΔHEI

=>ED/EH=EK/EI

=>ED*EI=EK*EH

c: góc DKI=90 độ-góc KED

góc DIK=góc HIE=90 độ-góc KEF

mà góc KED=góc KEF
nên góc DKI=góc DIK

=>ΔDKI cân tại D

mà DG là trung tuyến

nên DG vuông góc IK

18 tháng 3 2023

bạn ơi, góc DKI vuông góc từ đâu vậy?

 

10 tháng 4 2019

E M N H F

a) EH là phân giác nên ta có: 

\(\frac{HM}{HN}=\frac{EM}{EN}=\frac{3}{4}\)

b) Áp dụng định lí pitago cho tam giác EMN vuông tại E ta có: 

\(MN^2=ME^2+EN^2=25\Rightarrow MN=5\)

c) Ta có: \(HM=\frac{3}{4}HN\)

Mặt khác: HM+HN=MN=5=> \(\frac{3}{4}HN+HN=5\Leftrightarrow HN=\frac{20}{7}\)và \(HM=\frac{3}{4}.\frac{20}{7}=\frac{15}{7}\)

d) Xét tam giác  EMN vuông tại E và tam giác FHN vuông tại H có góc N chung

suy ra hai tam giác này đồng dạng theo trường hợp góc góc

16 tháng 12 2023

a: Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=15^2+20^2=625\)

=>\(BC=\sqrt{625}=25\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot25=15\cdot20=300\)

=>\(AH=\dfrac{300}{25}=12\left(cm\right)\)

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(3\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(4\right)\)

Từ (3) và (4) suy ra \(AM\cdot AB=AN\cdot AC\)

=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Do đó: ΔAMN đồng dạng với ΔACB

c: Ta có: ΔABC vuông tại A

mà AK là đường trung tuyến

nên AK=KC=KB

Ta có: KA=KC

=>ΔKAC cân tại K

=>\(\widehat{KAC}=\widehat{KCA}\)

Ta có: ΔAMN đồng dạng với ΔACB

=>\(\widehat{ANM}=\widehat{ABC}\)

Ta có: \(\widehat{KAC}+\widehat{ANM}\)

\(=\widehat{ABC}+\widehat{KCA}=90^0\)

=>AK\(\perp\)MN tại I

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2;CH\cdot BC=CA^2\)

=>\(BH\cdot25=15^2=225;CH\cdot25=20^2=400\)

=>BH=225/25=9(cm); CH=400/25=16(cm)

Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\)

=>\(AM\cdot15=12^2\)=144

=>AM=144/15=9,6(cm)

Ta có: AMHN là hình chữ nhật

=>AH=MN

mà AH=12cm

nênMN=12cm

Ta có: ΔANM vuông tại A

=>\(AN^2+AM^2=NM^2\)

=>\(AN^2+9,6^2=12^2\)

=>AN=7,2(cm)

Xét ΔIMA vuông tại I và ΔAMN vuông tại A có

\(\widehat{IMA}\) chung

Do đó: ΔIMA đồng dạng với ΔAMN

=>\(\dfrac{S_{IMA}}{S_{AMN}}=\left(\dfrac{AM}{MN}\right)^2=\left(\dfrac{4}{5}\right)^2=\dfrac{16}{25}\)

=>\(S_{IMA}=\dfrac{16}{25}\cdot\dfrac{1}{2}\cdot AM\cdot AN=22,1184\left(cm^2\right)\)

16 tháng 12 2023

cảm ơn ạ