K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

Mình không biết vẽ hình trên đây bạn tự vẽ hình nhé

a, Chứng minh DHMK là hình chữ nhật

Xét tứ giác DHMK có:  Góc D= Góc H= Góc F(=90 độ)

=> DHMK là hình chữ nhật

b, Chứng minh DE.DF=EF.DM và DE.DF=EF.HK

Xét tam giác DEF và tam giác MDF có:      Góc D= Góc M(=90 độ)

                                                                    Góc F:chung

=> Tam giác DEF đồng dạng với tam giác MDF(g.g)

=>\(\frac{DE}{MD}=\frac{EF}{DF}\)

=>DE.DF=EF.MD

Xét tam giác MDE và tam giác DFE có:     Góc M= Góc D(=90 độ)

                                                                    Góc E:chung

=>Tam giác MDE đồng dạng với tam giác DFE(g.g)

=>\(\frac{DE}{FE}=\frac{MD}{DF}\)

=>DE.DF=FE.MD

mà MD=HK(DHMK là hình chữ nhật)

=>DE.DF=FE.HK

c, Chứng minh DM2=EM.FM và HK2=EM.FM

Ta có:   Góc E+ Góc F=90 độ

             Góc F+ Góc D=90 độ 

=> Góc E= Góc D(cùng phụ với góc F)

Xét tam giác MDE và tam giác MFD có:     Góc E= Góc D

                                                                    Góc M:chung

=>Tam giác MDE đồng dạng với tam giác MFD(g.g)

=> \(\frac{MD}{MF}=\frac{ME}{MD}\)

=>MD2=ME.MF

Ta có:MD=HK(DHMK là hình chữ nhật)

mà MD2=ME.MF

=>HK2=ME.MF

a: Xét tứ giác DIMK có

\(\widehat{DIM}=\widehat{DKM}=\widehat{KDI}=90^0\)

=>DIMK là hình chữ nhật

b: Xét tứ giác DEHF có

M là trung điểm chung của DH và EF

=>DEHF là hình bình hành

Hình bình hành DEHF có \(\widehat{FDE}=90^0\)

nên DEHF là hình chữ nhật

6 tháng 12 2023

Hình?

23 tháng 12 2021

a/ Xét tứ giác DPMQ có

EDF=MQD=ˆMPD=90oEDF^=MQD^=MPD^=90o

=> Tứ giác DPMQ là hcn

b/ Để hcn DPMQ là hình vuông thì DM là tia pg ^EDF

c/ Có I đx M qua DE

=> DE là đường t/trực của IM

=> DI = DM (1)

=> t/g DIM cân tại D có DE là đường trung trực

=> DE đồng thời là đường pg

=> ˆIDE=ˆEDMIDE^=EDM^ (2) 

CMTT : DM = DK (3) ; ˆKDF=ˆFDMKDF^=FDM^ (4)

Từ (2) ; (4)

=> ∠IDE+EDF+KDF=IDK=180oIDE^+EDF^+KDF^=IDK^=180o

=> I,D,K thẳng hàng 

Từ (1) ; (3)=> ID = DK

Do đó D là trđ IK

=> I đx K qua D

11 tháng 12 2023

a: ΔDEF vuông tại D

=>\(DE^2+DF^2+EF^2\)

=>\(EF^2=9^2+12^2=225\)

=>\(EF=\sqrt{225}=15\left(cm\right)\)

Ta có; ΔDEF vuông tại D

mà DM là đường trung tuyến

nên \(DM=\dfrac{EF}{2}=7,5\left(cm\right)\)

b: Xét tứ giác DNMK có

\(\widehat{DNM}=\widehat{DKM}=\widehat{KDN}=90^0\)

=>DNMK là hình chữ nhật

c: Xét ΔDEF có MN//DF

nên \(\dfrac{MN}{DF}=\dfrac{EM}{EF}\)

=>\(\dfrac{MN}{DF}=\dfrac{1}{2}\)

mà \(MN=\dfrac{1}{2}MH\)

nên MH=DF

Ta có: MN//DF

N\(\in\)MH

Do đó: MH//DF

Xét tứ giác DHMF có

MH//DF

MH=DF

Do đó: DHMF là hình bình hành

=>DM cắt HF tại trung điểm của mỗi đường

mà O là trung điểm của DM

nên O là trung điểm của HF

=>H,O,F thẳng hàng

a: \(DE=\sqrt{15^2-12^2}=9\left(cm\right)\)

\(S_{DEF}=\dfrac{1}{2}\cdot9\cdot12=6\cdot9=54\left(cm^2\right)\)

b: Xét tứ giác DMHN có

góc DMH=góc DNH=góc MDN=90 độ

nên DMHN là hình chữ nhật

c: Xét tứ giác DHMK có

DK//MH

DK=MH

Do đó: DHMK là hình bình hành

5 tháng 3 2022

Xét  \(\Delta\)MQE và \(\Delta\)MRE có:

\(\widehat{QEM}\)\(\widehat{MER}\)(gt)

EM : cạnh chung (gt)

\(\widehat{Q}\)\(\widehat{R}\)= 90o (gt)

\(\rightarrow\)\(\Delta\)MQE = \(\Delta\)MRE

\(\Rightarrow\)MQ = MR

Xét ΔDQM vuông tại Q và ΔDRM vuông tại R có

DM chung

\(\widehat{QDM}=\widehat{RDM}\)

Do đó: ΔDQM=ΔDRM

Suy ra: MQ=MR

5 tháng 3 2022

Xét tam giác vuông DQM và tam giác vuông DRM, có:

DM: cạnh chung

góc QDM = góc RDM ( gt )

Vậy tam giác vuông DQM = tam giác vuông DRM ( cạnh huyền.góc nhọn)

=> MQ = MR ( 2 cạnh tương ứng )

12 tháng 11 2021

a, Vì \(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\) nên AEDF là hcn

Do đó AD=EF

12 tháng 11 2021

a: Xét tứ giác AEDF có

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật