Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét tứ giác DIMK có
\(\widehat{DIM}=\widehat{DKM}=\widehat{KDI}=90^0\)
=>DIMK là hình chữ nhật
b: Xét tứ giác DEHF có
M là trung điểm chung của DH và EF
=>DEHF là hình bình hành
Hình bình hành DEHF có \(\widehat{FDE}=90^0\)
nên DEHF là hình chữ nhật
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Xét tứ giác DPMQ có
∠EDF=∠MQD=ˆMPD=90oEDF^=MQD^=MPD^=90o
=> Tứ giác DPMQ là hcn
b/ Để hcn DPMQ là hình vuông thì DM là tia pg ^EDF
c/ Có I đx M qua DE
=> DE là đường t/trực của IM
=> DI = DM (1)
=> t/g DIM cân tại D có DE là đường trung trực
=> DE đồng thời là đường pg
=> ˆIDE=ˆEDMIDE^=EDM^ (2)
CMTT : DM = DK (3) ; ˆKDF=ˆFDMKDF^=FDM^ (4)
Từ (2) ; (4)
=> ∠IDE+∠EDF+∠KDF=∠IDK=180oIDE^+EDF^+KDF^=IDK^=180o
=> I,D,K thẳng hàng
Từ (1) ; (3)=> ID = DK
Do đó D là trđ IK
=> I đx K qua D
![](https://rs.olm.vn/images/avt/0.png?1311)
a: ΔDEF vuông tại D
=>\(DE^2+DF^2+EF^2\)
=>\(EF^2=9^2+12^2=225\)
=>\(EF=\sqrt{225}=15\left(cm\right)\)
Ta có; ΔDEF vuông tại D
mà DM là đường trung tuyến
nên \(DM=\dfrac{EF}{2}=7,5\left(cm\right)\)
b: Xét tứ giác DNMK có
\(\widehat{DNM}=\widehat{DKM}=\widehat{KDN}=90^0\)
=>DNMK là hình chữ nhật
c: Xét ΔDEF có MN//DF
nên \(\dfrac{MN}{DF}=\dfrac{EM}{EF}\)
=>\(\dfrac{MN}{DF}=\dfrac{1}{2}\)
mà \(MN=\dfrac{1}{2}MH\)
nên MH=DF
Ta có: MN//DF
N\(\in\)MH
Do đó: MH//DF
Xét tứ giác DHMF có
MH//DF
MH=DF
Do đó: DHMF là hình bình hành
=>DM cắt HF tại trung điểm của mỗi đường
mà O là trung điểm của DM
nên O là trung điểm của HF
=>H,O,F thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(DE=\sqrt{15^2-12^2}=9\left(cm\right)\)
\(S_{DEF}=\dfrac{1}{2}\cdot9\cdot12=6\cdot9=54\left(cm^2\right)\)
b: Xét tứ giác DMHN có
góc DMH=góc DNH=góc MDN=90 độ
nên DMHN là hình chữ nhật
c: Xét tứ giác DHMK có
DK//MH
DK=MH
Do đó: DHMK là hình bình hành
Cho tam giác cân DEF . đường phân giác DM ,từ M kẻ MQ vuông góc DE,MR vuông góc DF. Chứng minh MQ=MR
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét ΔDQM vuông tại Q và ΔDRM vuông tại R có
DM chung
\(\widehat{QDM}=\widehat{RDM}\)
Do đó: ΔDQM=ΔDRM
Suy ra: MQ=MR
Xét tam giác vuông DQM và tam giác vuông DRM, có:
DM: cạnh chung
góc QDM = góc RDM ( gt )
Vậy tam giác vuông DQM = tam giác vuông DRM ( cạnh huyền.góc nhọn)
=> MQ = MR ( 2 cạnh tương ứng )
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Vì \(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\) nên AEDF là hcn
Do đó AD=EF
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
Mình không biết vẽ hình trên đây bạn tự vẽ hình nhé
a, Chứng minh DHMK là hình chữ nhật
Xét tứ giác DHMK có: Góc D= Góc H= Góc F(=90 độ)
=> DHMK là hình chữ nhật
b, Chứng minh DE.DF=EF.DM và DE.DF=EF.HK
Xét tam giác DEF và tam giác MDF có: Góc D= Góc M(=90 độ)
Góc F:chung
=> Tam giác DEF đồng dạng với tam giác MDF(g.g)
=>\(\frac{DE}{MD}=\frac{EF}{DF}\)
=>DE.DF=EF.MD
Xét tam giác MDE và tam giác DFE có: Góc M= Góc D(=90 độ)
Góc E:chung
=>Tam giác MDE đồng dạng với tam giác DFE(g.g)
=>\(\frac{DE}{FE}=\frac{MD}{DF}\)
=>DE.DF=FE.MD
mà MD=HK(DHMK là hình chữ nhật)
=>DE.DF=FE.HK
c, Chứng minh DM2=EM.FM và HK2=EM.FM
Ta có: Góc E+ Góc F=90 độ
Góc F+ Góc D=90 độ
=> Góc E= Góc D(cùng phụ với góc F)
Xét tam giác MDE và tam giác MFD có: Góc E= Góc D
Góc M:chung
=>Tam giác MDE đồng dạng với tam giác MFD(g.g)
=> \(\frac{MD}{MF}=\frac{ME}{MD}\)
=>MD2=ME.MF
Ta có:MD=HK(DHMK là hình chữ nhật)
mà MD2=ME.MF
=>HK2=ME.MF