K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc MDH=90 độ-góc DMH

=90 độ-2*góc MDF

=90 độ-2*góc E

=góc F+góc E-2*góc E

=góc F-gócE

b: (EF+DH)^2-(DF+DE)^2

=EF^2+2*EF*DH+DH^2-DF^2-DE^2-2*DF*DE

=DH^2>0

=>EF+DH>DF+DE
=>EF-DE>DF-DH

8 tháng 3 2019

D F E H M K I

a) Do M là trung điểm của EF nên ME=MF=MD(đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền)

Suy ra  \(\Delta MDE\) cân tại M.

\(\Rightarrow\widehat{E}=\widehat{EDM}\)

Ta có:\(\widehat{F}=90^0-\widehat{E}\)

\(\widehat{HDE}=90^0-\widehat{E}\)

\(\Rightarrow\widehat{F}=\widehat{HDE}\)

Mà \(\widehat{MDH}=\widehat{MDE}-\widehat{HDE}\)

\(\Rightarrow\widehat{MDH}=\widehat{E}-\widehat{F}\)

b) Trên EF lấy điểm K sao cho EK=ED

    Trên DF lấy điểm I sao cho DI=DH

Khi đó:\(EF-DE=EF-EK=KF\)

\(DF-DH=DF-DI=IF\)

Ta cần chứng minh \(KF>IF\),thật vậy!

Ta có:\(EK=ED\)

\(\Rightarrow\Delta EDK\) cân tại E

\(\Rightarrow\widehat{EKD}=\widehat{EDK}\)

Ta lại có:\(\widehat{EDK}+\widehat{KDI}=90^0\)

\(\widehat{EKD}+\widehat{HDK}=90^0\)

Mà \(\widehat{EKD}=\widehat{EDK}\left(cmt\right)\)

\(\Rightarrow\widehat{KDI}=\widehat{HDK}\)

Xét \(\Delta DHK\&\Delta DIK\) có:

\(DH=DI\)(theo cách chọn điểm phụ)

\(\widehat{KDI}=\widehat{HDK}\left(cmt\right)\)

\(DK\) là cạnh chung

\(\Rightarrow\Delta DHK=\Delta DIK\left(c-g-c\right)\)

\(\Rightarrow\widehat{KID}=90^0\)

\(\Rightarrow\Delta FIK\) vuông tại I

\(\Rightarrow FK>FI^{đpcm}\)

29 tháng 1 2020

zZz Phan Gia Huy zZz trả lời đúng rồi

24 tháng 11 2023

a: 

\(\widehat{HDE}+\widehat{E}=90^0\)(ΔHDE vuông tại H)

\(\widehat{E}+\widehat{F}=90^0\)(ΔEDF vuông tại D)

Do đó: \(\widehat{HDE}=\widehat{F}\)

ΔDEF vuông tại D

mà DM là đường trung tuyến

nên MD=MF

=>\(\widehat{MDF}=\widehat{MFD}=\widehat{F}\)

\(\widehat{EDH}+\widehat{MDH}+\widehat{FDM}=\widehat{EDF}=90^0\)

=>\(\widehat{F}+\widehat{MDH}+\widehat{F}=90^0\)

=>\(\widehat{MDH}+2\cdot\widehat{F}=\widehat{E}+\widehat{F}\)

=>\(\widehat{MDH}=\widehat{E}+\widehat{F}-2\cdot\widehat{F}=\widehat{E}-\widehat{F}\)

b: 

Xét ΔDEF vuông tại D có DH là đường cao

nên \(DE\cdot DF=DH\cdot EF\)

ΔDEF vuông tại D

=>\(DE^2+DF^2=EF^2\)

\(\left(EF+DH\right)^2=EF^2+2\cdot EF\cdot DH+DH^2\)

\(=EF^2+2\cdot DE\cdot DF+DH^2\)

\(\left(DF+DE\right)^2=DF^2+2\cdot DF\cdot DE+DE^2\)

\(=\left(DF^2+DE^2\right)+2\cdot DF\cdot DE\)

\(=EF^2+2\cdot DH\cdot EF\)

\(\left(EF+DH\right)^2-\left(DF+DE\right)^2\)

\(=EF^2+2\cdot DH\cdot EF+DH^2-EF^2-2\cdot DH\cdot EF\)

\(=DH^2>0\)

=>EF+DH>DF+DE

=>EF-DE>DF-DH

24 tháng 11 2023

ai giúp mik vs

 

23 tháng 4 2018

bài này quá dễ

31 tháng 3 2019

dễ thì làm đi

14 tháng 4 2020

a) Xét tam giác DEH và tam giác DFH ta có:

        DE = DF ( tam giác DEF cân tại D )

        DEH = DFH ( tam giác DEF cân tại D )

        EH = EF ( H là trung điểm của EF )

=> tam giác DEH = tam giác DFH ( c.g.c) (dpcm)

=> DHE=DHF(hai góc tương ứng)

Mà DHE+DHF=180 độ  =>DHE=DHF=180 độ / 2 = 90 độ ( góc vuông ) hay DH vuông góc với EF ( dpcm )

 b) Xét tam giác MEH và tam giac NFH ta có:

          EH=FH(theo a)

          MEH=NFH(theo a)

  => tam giác MEH = tam giác NFH ( ch-gn)

  => HM=HN ( 2 cạnh tương ứng ) hay tam giác HMN cân tại H ( dpcm )

c) Ta có : +) DM+ME=DE =>DM=DE-ME

                +) DN+NF=DF => DN=DF-NF

Mà DE=DF(theo a)   ;     ME=NF( theo b tam giác MEH=tam giác NFH)

=>DM=DN => tam giác DMN cân tại D 

Xét tam giac cân DMN ta có:

     DMN=DNM=180-MDN/2      (*)

Xét tam giác cân DEF ta có:

     DEF=DFE =180-MDN/2       (*)

Từ (*) và (*) Suy ra góc DMN = góc DEF

Mà DMN và DEF ở vị trí đồng vị

=> MN//EF (dpcm)

d) Xét tam giác DEK và tam giác DFK ta có:

        DK là cạnh chung

        DE=DF(theo a)

    => tam giác DEK= tam giác DFK(ch-cgv)

   =>DKE=DKF(2 góc tương ứng)

   =>DK là tia phân giác của góc EDF       (1)

Theo a tam giac DEH= tam giac DFH(c.g.c)

   =>EDH=FDH(2 góc tương ứng)

   =>DH là tia phân giác của góc EDF        (2)

Từ (1) và (2) Suy ra D,H,K thẳng hàng (dpcm)

\(\text{#TNam}\)

`a,` Xét Tam giác `HED` và Tam giác `HFD` có

`DE = DF (\text {Tam giác DEF cân tại D})`

\(\widehat{E}=\widehat{F}\) `(\text {Tam giác DEF cân tại D})`

`=> \text {Tam giác HED = Tam giác HDF (ch-gn)}`

`b,` Vì Tam giác `HED =` Tam giác `HFD (a)`

`-> HE = HF (\text {2 cạnh tương ứng})`

Xét Tam giác `HEM` và Tam giác `HFN` có:

`HE = HF (CMT)`

\(\widehat{E}=\widehat{F}\) `(a)`

\(\widehat{EMH}=\widehat{FNH}=90^0\)

`=> \text {Tam giác HEM = Tam giác HFN (ch-gn)}`

`-> EM = FN (\text {2 cạnh tương ứng})`

Ta có: \(\left\{{}\begin{matrix}DE=MD+ME\\DF=ND+NF\end{matrix}\right.\)

Mà `DE = DF, ME = NF`

`-> MD = ND`

Xét Tam giác `DMN: DM = DN (CMT)`

`-> \text {Tam giác DMN cân tại D}`

`->`\(\widehat{DMN}=\widehat{DNM}=\)\(\dfrac{180-\widehat{A}}{2}\)

Tam giác `DEF` cân tại `D`

`->`\(\widehat{E}=\widehat{F}=\)\(\dfrac{180-\widehat{A}}{2}\)

`->`\(\widehat{DMN}=\widehat{E}\)

Mà `2` góc này nằm ở vị trí đồng vị

`-> \text {MN // EF (t/c 2 đt' //)}`

loading...