Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc MDH=90 độ-góc DMH
=90 độ-2*góc MDF
=90 độ-2*góc E
=góc F+góc E-2*góc E
=góc F-gócE
b: (EF+DH)^2-(DF+DE)^2
=EF^2+2*EF*DH+DH^2-DF^2-DE^2-2*DF*DE
=DH^2>0
=>EF+DH>DF+DE
=>EF-DE>DF-DH
D F E H M K I
a) Do M là trung điểm của EF nên ME=MF=MD(đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền)
Suy ra \(\Delta MDE\) cân tại M.
\(\Rightarrow\widehat{E}=\widehat{EDM}\)
Ta có:\(\widehat{F}=90^0-\widehat{E}\)
\(\widehat{HDE}=90^0-\widehat{E}\)
\(\Rightarrow\widehat{F}=\widehat{HDE}\)
Mà \(\widehat{MDH}=\widehat{MDE}-\widehat{HDE}\)
\(\Rightarrow\widehat{MDH}=\widehat{E}-\widehat{F}\)
b) Trên EF lấy điểm K sao cho EK=ED
Trên DF lấy điểm I sao cho DI=DH
Khi đó:\(EF-DE=EF-EK=KF\)
\(DF-DH=DF-DI=IF\)
Ta cần chứng minh \(KF>IF\),thật vậy!
Ta có:\(EK=ED\)
\(\Rightarrow\Delta EDK\) cân tại E
\(\Rightarrow\widehat{EKD}=\widehat{EDK}\)
Ta lại có:\(\widehat{EDK}+\widehat{KDI}=90^0\)
\(\widehat{EKD}+\widehat{HDK}=90^0\)
Mà \(\widehat{EKD}=\widehat{EDK}\left(cmt\right)\)
\(\Rightarrow\widehat{KDI}=\widehat{HDK}\)
Xét \(\Delta DHK\&\Delta DIK\) có:
\(DH=DI\)(theo cách chọn điểm phụ)
\(\widehat{KDI}=\widehat{HDK}\left(cmt\right)\)
\(DK\) là cạnh chung
\(\Rightarrow\Delta DHK=\Delta DIK\left(c-g-c\right)\)
\(\Rightarrow\widehat{KID}=90^0\)
\(\Rightarrow\Delta FIK\) vuông tại I
\(\Rightarrow FK>FI^{đpcm}\)
D E F M N H
lưu ý hình ảnh chỉ mang t/c minh họa ; vui lòng k vẽ theo
xét \(\Delta DHM\)VÀ \(\Delta DHN\)
DH-CẠNH CHUNG
\(\widehat{HDM}=\widehat{HDN}\left(gt\right)\)
\(\widehat{DMH}=\widehat{DNH}=90^o\left(gt\right)\)
=> \(\Delta DHM=\Delta DHN\)
=>HM = HN.
b) xét tam giác DEF cân tại D
=> \(\widehat{DEF}=\widehat{DFE}\)(T/C TAM GIÁC CÂN )
=>\(\widehat{MEH}=\widehat{NFH}\)
XÉT \(\Delta MEH\)VÀ \(\Delta NFH\)
\(\widehat{EMH}=\widehat{FNH}=90^o\left(gt\right)\)
\(\widehat{MEH}=\widehat{NFH}\left(cmt\right)\)
\(HM=HN\left(cmt\right)\)
=> \(\Delta MEH=\Delta NFH\)
D E F M N H
a) Xét 2 tam giác vuông: \(\Delta MDH\)và \(\Delta NDH\)có:
\(\widehat{MDH}=\widehat{NDH}\left(gt\right)\)
\(HD\)cạnh chung
\(\Rightarrow\Delta MDH=\Delta NDH\left(ch-gn\right)\)
\(\Rightarrow HM=HN\)( 2 cạnh tương ứng)
b) Ta có: \(DE=DF\)( vì tam giác DEF cân tại D )
Hay \(DM+ME=DN+NF\)
mà \(DM=DN\)( 2 cạnh tương ưng của tam giác MDH và tam giác NDH )
\(\Rightarrow ME=NF\)
Xét \(\Delta HME\)và \(\Delta HNF\)có:
\(\widehat{HME}=\widehat{HNF}\left(=90^o\right)\)
\(ME=NF\left(cmt\right)\)
\(\widehat{MEH}=\widehat{NFH}\) ( vì tam giác DEF cân tại D)
\(\Rightarrow\Delta HME=\Delta HNF\left(g-c-g\right)\)
hok tốt!!
a) Ta có: \(DN=\dfrac{DE}{2}\)(N là trung điểm của DE)
\(DM=\dfrac{DF}{2}\)(M là trung điểm của DF)
mà DE=DF(ΔDEF cân tại D)
nên DN=DM
Xét ΔDNH vuông tại H và ΔDMH vuông tại M có
DN=DM(cmt)
DH chung
Do đó: ΔDNH=ΔDMH(Cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{NDH}=\widehat{MDH}\)(hai góc tương ứng)
hay \(\widehat{EDH}=\widehat{FDH}\)
Xét ΔEDH và ΔFDH có
DE=DF(ΔDEF cân tại D)
\(\widehat{EDH}=\widehat{FDH}\)(cmt)
DH chung
Do đó: ΔEDH=ΔFDH(c-g-c)
Suy ra: HE=HF(Hai cạnh tương ứng)
a) Xét tam giác DEH và tam giác DFH ta có:
DE = DF ( tam giác DEF cân tại D )
DEH = DFH ( tam giác DEF cân tại D )
EH = EF ( H là trung điểm của EF )
=> tam giác DEH = tam giác DFH ( c.g.c) (dpcm)
=> DHE=DHF(hai góc tương ứng)
Mà DHE+DHF=180 độ =>DHE=DHF=180 độ / 2 = 90 độ ( góc vuông ) hay DH vuông góc với EF ( dpcm )
b) Xét tam giác MEH và tam giac NFH ta có:
EH=FH(theo a)
MEH=NFH(theo a)
=> tam giác MEH = tam giác NFH ( ch-gn)
=> HM=HN ( 2 cạnh tương ứng ) hay tam giác HMN cân tại H ( dpcm )
c) Ta có : +) DM+ME=DE =>DM=DE-ME
+) DN+NF=DF => DN=DF-NF
Mà DE=DF(theo a) ; ME=NF( theo b tam giác MEH=tam giác NFH)
=>DM=DN => tam giác DMN cân tại D
Xét tam giac cân DMN ta có:
DMN=DNM=180-MDN/2 (*)
Xét tam giác cân DEF ta có:
DEF=DFE =180-MDN/2 (*)
Từ (*) và (*) Suy ra góc DMN = góc DEF
Mà DMN và DEF ở vị trí đồng vị
=> MN//EF (dpcm)
d) Xét tam giác DEK và tam giác DFK ta có:
DK là cạnh chung
DE=DF(theo a)
=> tam giác DEK= tam giác DFK(ch-cgv)
=>DKE=DKF(2 góc tương ứng)
=>DK là tia phân giác của góc EDF (1)
Theo a tam giac DEH= tam giac DFH(c.g.c)
=>EDH=FDH(2 góc tương ứng)
=>DH là tia phân giác của góc EDF (2)
Từ (1) và (2) Suy ra D,H,K thẳng hàng (dpcm)
a:
\(\widehat{HDE}+\widehat{E}=90^0\)(ΔHDE vuông tại H)
\(\widehat{E}+\widehat{F}=90^0\)(ΔEDF vuông tại D)
Do đó: \(\widehat{HDE}=\widehat{F}\)
ΔDEF vuông tại D
mà DM là đường trung tuyến
nên MD=MF
=>\(\widehat{MDF}=\widehat{MFD}=\widehat{F}\)
\(\widehat{EDH}+\widehat{MDH}+\widehat{FDM}=\widehat{EDF}=90^0\)
=>\(\widehat{F}+\widehat{MDH}+\widehat{F}=90^0\)
=>\(\widehat{MDH}+2\cdot\widehat{F}=\widehat{E}+\widehat{F}\)
=>\(\widehat{MDH}=\widehat{E}+\widehat{F}-2\cdot\widehat{F}=\widehat{E}-\widehat{F}\)
b:
Xét ΔDEF vuông tại D có DH là đường cao
nên \(DE\cdot DF=DH\cdot EF\)
ΔDEF vuông tại D
=>\(DE^2+DF^2=EF^2\)
\(\left(EF+DH\right)^2=EF^2+2\cdot EF\cdot DH+DH^2\)
\(=EF^2+2\cdot DE\cdot DF+DH^2\)
\(\left(DF+DE\right)^2=DF^2+2\cdot DF\cdot DE+DE^2\)
\(=\left(DF^2+DE^2\right)+2\cdot DF\cdot DE\)
\(=EF^2+2\cdot DH\cdot EF\)
\(\left(EF+DH\right)^2-\left(DF+DE\right)^2\)
\(=EF^2+2\cdot DH\cdot EF+DH^2-EF^2-2\cdot DH\cdot EF\)
\(=DH^2>0\)
=>EF+DH>DF+DE
=>EF-DE>DF-DH
ai giúp mik vs