Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔDEF vuông tại D
=>góc DEF<90 độ
=>góc FEP>90 độ
=>FE<FP
góc FEP>90 độ
=>góc FPE<90 độ
=>góc FPQ>90 độ
=>FP<FQ
b: FE<FP
FP<FQ
=>FE<FP<FQ
b) tam giác OFP và OFQ có
OF là cạnh chung
góc FOP=FOQ( giả thiết)
OP=OQ(cm trên)
=> tam giác OFP=OFQ(c.g.c)
=> FP=FQ( 2 cạnh tương ứng)
và góc OPF= OQF( 2 góc tương ứng)
tick nha!
a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)
hay\(5^2=3^2+DF^2\)
\(\Rightarrow DF^2=5^2-3^2=25-9=16\)
\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)
Ta có:\(DE=3cm\)
\(DF=4cm\)
\(EF=5cm\)
\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)
b)Xét\(\Delta DEF\)và\(\Delta DKF\)có:
\(DE=DK\)(\(D\)là trung điểm của\(EK\))
\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)
\(DF\)là cạnh chung
Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)
\(\Rightarrow EF=KF\)(2 cạnh t/ứ)
Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)
Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)
c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
Ta lại có:\(DF\)cắt\(KI\)tại\(G\)
mà\(DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)
\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))
\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)
Vậy\(GF\approx2,7cm\)
a) Ta có : \(15^2=9^2+12^2\)
\(225=81+144\)
\(\Rightarrow DF^2=DE^2+EF^2\)
\(\Rightarrow\Delta DEF\)là tam giác vuông tại E ( ĐL Py - ta - go đảo )
b) Ta có : \(\widehat{DEF}+\widehat{IEF}=180^o\)( kề bù )
\(90^o+\widehat{IEF}=180^o\)
\(\widehat{IEF}=180^o-90^o\)
\(\widehat{IEF}=90^o\)
\(\Rightarrow\Delta IEF\)là tam vuông tại E
Xét \(\Delta IEF\)vuông tại E có :
\(IF^2=IE^2+EF^2\)( ĐL Py - ta - go )
\(IF^2=5^2+12^2\)
\(IF^2=25+144\)
\(IF^2=169\)
\(\Rightarrow IF=\sqrt{169}=13\)
Vậy \(IF=13cm\)
a. Xét tam giác OPE vuông tại E và tam giác OQE vuông tại E
Có : + OE chung '
+ Góc POE = Góc QOE ( Om là tia phân giác góc xOy )
=> Tam giác OPE = Tam giác OQE ( Cgv - gn )
=> OP = OQ ( hai cạnh tương ứng )
b. Xét tam giác OPF và tam giác OQF
Có : + OP = OQ ( cmt )
+ Góc POF = Góc QOF ( Om là tia phân giác góc xOy )
+ OF chung
=> Tam giác OPF = Tam giác OQF ( c.g.c)
=> FP = FQ ( hai cạnh tương ứng ) và Góc OPF = góc OQF ( hai góc tương ứng )
a, ta có:
BC2=AB2+AC2
thay 152=92+AC2
225=81+AC2
AC2=144
AC=12
Vậy cạnh AC=12cm
Mà AC > AB(vì 12>9)
=>góc ABC > góc ACB(Đ/lí góc đối diện vs cạnh lớn hơn)
b,ta có:BA=DA(vì A là trung điểm của BD)
xét tam giác BCA và tam giácDCA
có:BA=DA(C/m trên)
góc BAC=góc DAC (=900)
AC là cạnh chung
=>tam giác BCA=tam giác DCA(c.g.c)
=>BC=DC(2 cạnh t/ứng)
=>tam giác BDC cân tại C
mk chỉ làm đc thế thôi
ok
hình bn tự vẽ nhé,mk ko biết vẽ hình trên đây:
a) Xét tam giác ABC vuông ở A có:
AB2+AC2=BC2 (đ/l pytago)
=>AC2=BC2-AB2=152-92=144
=>AC=12(cm)
Vì AC>AB (12cm>9cm)
=>^ABC>^ACB (đ/l về góc đối diện.....)
b Vì AB _|_ AC (tam giác ABC vuông tại A)
mà AD là tia đối tia AB=>AD _|_ AC
Xét tam giác ABC vuông tại A và tam giác ADC vuông tại A có:
AC:cạnh chung
AB=AD (A là trung điểm của BD)
=>tam giác ABC=tam giác ADC (2 cạnh góc vuông)
a. Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A, ta có:
BC2=AB2+AC2
152 = 92 +AC2
AC2 =152-92=144
AC=12 (cm)
Xét tam giác ABC: AC > AB (12 cm >9cm)
=> góc ABC>góc ACB ( quan hệ giữa góc và cạnh đối diện)
b. Ta có: góc BAC + góc DAC = 180* ( hai góc kề bù)
90* + góc DAC = 180*
=> góc DAC =180*-90*=90*
=> tam giác ADC vuông tại A.
Xét tam giác ABC vuông tại A và tam giác ADC vuông tại A, ta có:
AB = AD (A là trung điểm của BD)
AC là cạnh chung
=> tam giác ABC= tam giác ADC ( hai cạnh góc vuông)
=> BC = DC ( hai cạnh tương ứng)
=> tam giác BDC cân tại C.
c. A là trung điểm của BD => CA là đường trung tuyến của tam giác BDC.
K là trung điểm của BC => DK là đường trung tuyến của tam giác BDC.
CA cắt t DK tại M=> M là trọng tâm của tam giác BDC.
=> CM =2/3CA
CM =2/3.12
CM = 8 (cm)
Vậy CM=8 cm