K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔDEF vuông tại D

=>góc DEF<90 độ

=>góc FEP>90 độ

=>FE<FP 

góc FEP>90 độ

=>góc FPE<90 độ

=>góc FPQ>90 độ

=>FP<FQ

b: FE<FP

FP<FQ

=>FE<FP<FQ

14 tháng 12 2015

b) tam giác OFP và OFQ có 

OF là cạnh chung 

góc FOP=FOQ( giả thiết)

OP=OQ(cm trên)

=> tam giác OFP=OFQ(c.g.c)

=> FP=FQ( 2 cạnh tương ứng)

và góc OPF= OQF( 2 góc tương ứng)

tick nha!

30 tháng 4 2019

a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)

hay\(5^2=3^2+DF^2\)

\(\Rightarrow DF^2=5^2-3^2=25-9=16\)

\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)

Ta có:\(DE=3cm\)

\(DF=4cm\)

\(EF=5cm\)

\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)

b)Xét\(\Delta DEF\)\(\Delta DKF\)có:

\(DE=DK\)(\(D\)là trung điểm của\(EK\))

\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)

\(DF\)là cạnh chung

Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)

\(\Rightarrow EF=KF\)(2 cạnh t/ứ)

Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)

Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)

c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

Ta lại có:​\(DF\)cắt\(KI\)tại\(G\)

mà​\(DF\)​là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)

\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))

\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)

Vậy\(GF\approx2,7cm\)

30 tháng 4 2020

a) Ta có : \(15^2=9^2+12^2\)

                \(225=81+144\)

\(\Rightarrow DF^2=DE^2+EF^2\)

\(\Rightarrow\Delta DEF\)là tam giác vuông tại E ( ĐL Py - ta - go đảo )

b) Ta có : \(\widehat{DEF}+\widehat{IEF}=180^o\)( kề bù )

                \(90^o+\widehat{IEF}=180^o\)

                               \(\widehat{IEF}=180^o-90^o\)

                               \(\widehat{IEF}=90^o\)

\(\Rightarrow\Delta IEF\)là tam vuông tại E

Xét \(\Delta IEF\)vuông tại E có :

\(IF^2=IE^2+EF^2\)( ĐL Py - ta - go )

\(IF^2=5^2+12^2\)

\(IF^2=25+144\)

\(IF^2=169\)

\(\Rightarrow IF=\sqrt{169}=13\)

Vậy \(IF=13cm\)

14 tháng 12 2015

a. Xét tam giác OPE vuông tại E và tam giác OQE vuông tại E

Có :  + OE chung '

        + Góc POE = Góc QOE ( Om là tia phân giác góc xOy )

=> Tam giác OPE = Tam giác OQE ( Cgv - gn ) 

=> OP = OQ ( hai cạnh tương ứng ) 

 

b. Xét tam giác OPF và tam giác OQF 

Có : + OP = OQ ( cmt )

       + Góc POF = Góc QOF ( Om là tia phân giác góc xOy ) 

       + OF chung 

=> Tam giác OPF = Tam giác OQF ( c.g.c)

=> FP = FQ ( hai cạnh tương ứng ) và Góc OPF = góc OQF ( hai góc tương ứng ) 

25 tháng 3 2017

a, ta có:

         BC2=AB2+AC2

thay  152=92+AC2

        225=81+AC2

       AC2=144

       AC=12

  Vậy cạnh AC=12cm

 Mà AC > AB(vì 12>9)

=>góc ABC > góc ACB(Đ/lí góc đối diện vs cạnh lớn hơn)

b,ta có:BA=DA(vì A là trung điểm của BD)

xét tam giác BCA và tam giácDCA

có:BA=DA(C/m trên)

    góc BAC=góc DAC (=900)

    AC là cạnh chung

=>tam giác BCA=tam giác DCA(c.g.c)

=>BC=DC(2 cạnh t/ứng)

=>tam giác BDC cân tại C

mk chỉ làm đc thế thôi

ok

19 tháng 5 2016

hình bn tự vẽ nhé,mk ko biết vẽ hình trên đây:

a)  Xét tam giác ABC vuông ở A có:

AB2+AC2=BC2 (đ/l pytago)

=>AC2=BC2-AB2=152-92=144

=>AC=12(cm)

Vì AC>AB (12cm>9cm)

=>^ABC>^ACB (đ/l về góc đối diện.....)

b Vì AB _|_ AC (tam giác ABC vuông tại A)

mà AD là tia đối tia AB=>AD _|_ AC

Xét tam giác ABC vuông tại A và tam giác ADC vuông tại A có:

AC:cạnh chung

AB=AD (A là trung điểm của BD)

=>tam giác ABC=tam giác ADC (2 cạnh góc vuông)

 

 

19 tháng 5 2016

a. Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A, ta có:

BC2=AB2+AC2

152 = 92 +AC2

AC2 =152-92=144

AC=12 (cm)

Xét tam giác ABC: AC > AB (12 cm >9cm)

=> góc ABC>góc ACB ( quan hệ giữa góc và cạnh đối diện)

b. Ta có: góc BAC + góc DAC = 180* ( hai góc kề bù)

                   90*     + góc DAC = 180*

=> góc DAC =180*-90*=90*

=> tam giác ADC vuông tại A.

Xét tam giác ABC vuông tại A và tam giác ADC vuông tại A, ta có:

AB = AD (A là trung điểm của BD)

AC là cạnh chung

=> tam giác ABC= tam giác ADC ( hai cạnh góc vuông)

=> BC = DC ( hai cạnh tương ứng)

=> tam giác BDC cân tại C.

c. A là trung điểm của BD => CA là đường trung tuyến của tam giác BDC.

   K là trung điểm của BC => DK là đường trung tuyến của tam giác BDC.

CA cắt t DK tại M=> M là trọng tâm của tam giác BDC.

=> CM =2/3CA    

     CM =2/3.12

     CM = 8 (cm)

Vậy CM=8 cm