Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xet ΔEDF có EK là phân giác
nên DK/DE=FK/FE
=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1
=>DK=3cm; FK=5cm
b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có
góc DEK=góc HEI
=>ΔDEK đồng dạng với ΔHEI
=>ED/EH=EK/EI
=>ED*EI=EK*EH
c: góc DKI=90 độ-góc KED
góc DIK=góc HIE=90 độ-góc KEF
mà góc KED=góc KEF
nên góc DKI=góc DIK
=>ΔDKI cân tại D
mà DG là trung tuyến
nên DG vuông góc IK
Mình không biết vẽ hình trên đây bạn tự vẽ hình nhé
a, Xét tam giác BDA và tam giác KDC có: Góc BDA= Góc KDC(đối đỉnh)
Góc B= Góc K(90 độ)
=>Tam giác BDA đồng dạng với tam giác KDC(g.g)
=>\(\frac{DB}{DA}=\frac{DK}{DC}\)
b, Xét tam giác DBK và tam giác DAC có: Góc BDK= Góc DAC(đối đỉnh)
\(\frac{DB}{DA}=\frac{DK}{DC}\)
=>Tam giác DBK đồng dạng với tam giác DAC(c.g.c)
c, Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại B, ta có:
BC2=AC2-AB2
BC2=52-32
BC2=16
BC=4(cm)
Vì AD là phân giác
=>\(\frac{AB}{AC}=\frac{BD}{CD}\)
=>\(\frac{AB}{AC+AB}=\frac{BD}{CD+BD}\)
=>\(\frac{3}{5+3}=\frac{BD}{BC}\)
=>\(\frac{3}{8}=\frac{BD}{4}\)
=>BD=1,5(cm)
=>CD=BC-BD
CD=4-1,5
CD=2,5(cm)
D E F I K O
a) Xét \(\Delta vuôngKEDva\Delta vuôngDEF\) có:
\(\widehat{E:}chung\)
\(\Rightarrow\Delta KED\) đồng dạng \(\Delta DEF\)
b) Vì \(\Delta KED\) đồng dạng \(\Delta DEF\) (1)
\(\Rightarrow\frac{KE}{DE}=\frac{DE}{EF}\Rightarrow DE.DE=KE.EF\Rightarrow DE^2=KE.EF\)
b2) Xét \(\Delta VuôngKFD\) và \(\Delta vuôngDEF\)có :
\(\widehat{F:}chung\)
\(\Rightarrow\Delta KFD\) đồng dạng \(\Delta DEF\) (2)
từ (1) và (2) suy ra \(\Delta KED\) đồng dạng \(\Delta KFD\)
\(\Rightarrow\frac{EK}{DK}=\frac{DK}{KF}\Rightarrow DK.DK=KE.KF\Rightarrow DK^2=KE.KF\)
b3) xin lỗi mình chưa bt cách làm
c) \(\Delta DEF\) là tam giác vuông nên:
\(EF^2=DE^2.DF^2\)
\(EF=\sqrt{DE^2.DF^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
Vì EI là đường phân giác của\(\Delta DEF\)
\(\Rightarrow\) \(\frac{DI}{DE}=\frac{IF}{EF}\Rightarrow DI=\frac{DE.IF}{EF}=\frac{3.4}{5}=2,4\left(cm\right)\)
DF=ID+IF\(\Rightarrow IF=DF-DI=4-2,4=1,6\left(cm\right)\)
Vì \(\Delta KED\) đồng dạng \(\Delta DEF\) nên:
\(\frac{DK}{DF}=\frac{DE}{EF}\Rightarrow DK=\frac{DF.DE}{EF}=\frac{4.3}{5}=2,4\left(cm\right)\)
d) Ta có \(DE^2=KE.EF\)
suy ra \(\frac{DE}{KE}=\frac{EF}{DE}\) (4)
Mà \(\frac{DE}{KE}=\frac{OK}{OD}\)( EO là đường phân giác của \(\Delta KED\)) (5)
Lại có \(\frac{EF}{DE}=\frac{IF}{DI}Hay\frac{DE}{EF}=\frac{DI}{IF}\)( EI là đường phân giác của \(\Delta DEF\)) (6)
Từ (4),(5),(6) suy ra \(\frac{DI}{IF}=\frac{OK}{OD}\)
a: Xét ΔDEF có DI là phân giác
nên \(\dfrac{DE}{DF}=\dfrac{EI}{IF}\)
=>\(\dfrac{EI}{4,8}=\dfrac{10}{6}=\dfrac{5}{3}\)
=>EI=8(cm)
b: Ta có: EI+IF=EF
=>EF=6+8=14(cm)
Xét ΔEDF có MI//DF
nên \(\dfrac{MI}{DF}=\dfrac{EI}{EF}=\dfrac{EM}{ED}\)
=>\(\dfrac{MI}{6}=\dfrac{EM}{10}=\dfrac{6}{14}=\dfrac{3}{7}\)
=>\(MI=\dfrac{18}{7}\left(cm\right);EM=\dfrac{30}{7}\left(cm\right)\)
MD+ME=DE
=>MD+30/7=10
=>MD=40/7(cm)
c: Xét ΔDEF có DI là phân giác
nên \(\dfrac{EI}{IF}=\dfrac{ED}{DF}\left(1\right)\)
Xét ΔEDF có MI//DF
nên \(\dfrac{EI}{IF}=\dfrac{ME}{MD}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{ED}{DF}=\dfrac{ME}{MD}\)
a: Xét ΔDKF vuông tại K và ΔEDF vuông tại D có
góc F chung
=>ΔDKF đồng dạng với ΔEDF
b: \(DF=\sqrt{20^2-16^2}=12\left(cm\right)\)
DK=12*16/20=9,6cm
c: MK/MD=FK/FD
DI/EI=FD/FE
mà FK/FD=FD/FE
nên MK/MD=DI/EI