Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:
\(EF^2=DE^2+DF^2\)
\(\Leftrightarrow EF^2=9^2+12^2=225\)
hay EF=15(cm)
Vậy: EF=15cm
Giải:
Áp dụng định lý Py-ta-go vào tam giác HDF, ta có:
HF2 + DH2 = DF2
=> 162 + DH2 = 202
=> DH2 = 144 = 122
=> DH = 12 (cm)
Áp dụng định lý Py-ta-go vào tam giác DEH có:
DE2 = 92 + 122 = 225 = 152
=> DE = 15 (cm)
áp dụng định lý pitago vào tam giác DHF ta có:
HF2 + DH2 = DF2
hay 162+ DH2 = 202
suy ra : DH2= 144 =122
suy ra: DH = 12
áp dụng định lý pitago vào tam giác DEH ta có :
DE2 = 92+122= 225 = 152
suy ra : DE = 15
Xét tam giác DEF vuông tại D (gt)
\(\Rightarrow EF^2=DE^2+DF^2\)(định lí Pi-ta-go)
Mà \(\hept{\begin{cases}DE=4\left(gt\right)\\EF=5\left(gt\right)\end{cases}}\)
\(\Rightarrow5^2=4^2+DF^2\)
\(\Rightarrow25=16+DF^2\)
\(\Rightarrow DF^2=25-16=9\)
\(\Rightarrow DF=3\)(vì độ dài cạnh luôn lớn hơn 0)
a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)
hay\(5^2=3^2+DF^2\)
\(\Rightarrow DF^2=5^2-3^2=25-9=16\)
\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)
Ta có:\(DE=3cm\)
\(DF=4cm\)
\(EF=5cm\)
\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)
b)Xét\(\Delta DEF\)và\(\Delta DKF\)có:
\(DE=DK\)(\(D\)là trung điểm của\(EK\))
\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)
\(DF\)là cạnh chung
Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)
\(\Rightarrow EF=KF\)(2 cạnh t/ứ)
Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)
Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)
c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
Ta lại có:\(DF\)cắt\(KI\)tại\(G\)
mà\(DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)
\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))
\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)
Vậy\(GF\approx2,7cm\)
a: Xét ΔDHE vuông tại H và ΔDHF vuông tại H có
DE=DF
DH chung
=>ΔDHE=ΔDHF
b: ΔDHE=ΔDHF
=>góc EDH=góc FDH=40/2=20 độ
c: góc FKD=góc FHD=90 độ
=>FHKD nội tiếp
=>góc KDH=góc KFH
Xét tam giác vuông DEF
Theo định lý py - ta - go ta có
DE2 + DF2 = EF2
=> 92 + 122 = EF2
=> 225 = EF2
=> EF = 15cm
Áp dụng định lý py - ta - go trong tam giác vuông DEF có
DE2 + DF2 = EF2
92 + 122 = EF2
81 + 144 = EF2
EF2\(\sqrt{225}=15cm\)