K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác DKMI có 

\(\widehat{DKM}\) và \(\widehat{DIM}\) là hai góc đối

\(\widehat{DKM}+\widehat{DIM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: DKMI là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

 

13 tháng 3 2020

Đáp án:

Giải thích các bước giải:

1. Xét tứ giác CEHD có :

CEH = 90 ( BE là đường cao )

CDH = 90 ( AD là đường cao )

⇒ CEH + CDH = 90 + 90 = 180

Mà CEH và CDH là hai góc đối của tứ giác CEHD

⇒ CEHD là tứ giác nội tiếp (đpcm)

2. BE là đường cao ( gt )

⇒ BE ⊥ AB ⇒ BFC = 90

Như vậy E và F cùng nhìn BC dưới một góc 90 ⇒ E và F cùng nằm trên (O) đường kính AB

⇒ 4 điểm B, C, E, F cùng nằm trên một đường tròn (đpcm)

3. Xét ΔAEH và ΔADC có :

AEH = ADC (=90)

A chung

⇒ ΔAEH ~ ΔADC

⇒ AE/AD = AH/AC

⇒ AE.AC = AH.AD

Xét ΔBEC và ΔADC có :

BEC = ADC (=90)

C chung

⇒ ΔBEC ~ ΔADC

⇒ AE/AD = BC/AC

⇒ AD.BC = BE.AC (đpcm)

4. Có : C1 = A1 (cùng phụ góc ABC)

C2 = A1 ( hai góc nối tiếp chắn cung BM )

⇒ C1 = C2 ⇒ CB là tia phân giác HCM

Lại có : CB ⊥ HM

⇒ Δ CHM cân tại C

⇒ CB là đường trung trực của HM

⇒ H và M đối xứng nhau qua BC (đpcm)

5. Có : Bốn điểm B,C,E,F cùng nằm trên một đường tròn ( câu 2 )

⇒ C1 = E1 (hai góc nội tiếp cùng chắn BF) (*)

Có : Tứ giác CEHD nội tiếp (câu 1)

⇒ C1 = E2 (hai góc nội tiếp cùng chắn cung HD ) (**)

Từ (*) và (**) ta suy ra :

E1 = E2

⇒ EB là tia phân giác DEF

Cm tương tự ta được : FC là tia phân giác của DFE

Mà BE và CF cắt nhau tại H

⇒ H là tâm của đường tròn nội tiếp ΔDEF

tứ giác BFEC có hai góc kề nhau cùng nhìn đoạn BC dưới một góc vuông : BFCˆ=BECˆ(=90)BFC^=BEC^(=90) ==> Tức giác BFEC là tứ giác nội tiếp

==> 4 điểm B,E,F,C cùng thuộc một đường tròn.

a: Xét tứ giác DMHN có \(\widehat{DMH}+\widehat{DNH}=90^0+90^0=180^0\)

nên DMHN là tứ giác nội tiếp

Xét tứ giác DMKE có \(\widehat{DME}=\widehat{DKE}=90^0\)

nên DMKE là tứ giác nội tiếp

b: Xét (O) có

\(\widehat{DFE}\) là góc nội tiếp chắn cung DE

\(\widehat{DSE}\) là góc nội tiếp chắn cung DE

Do đó: \(\widehat{DFE}=\widehat{DSE}\)

Xét (O) có

ΔDES nội tiếp

DS là đường kính

Do đó: ΔDES vuông tại E

Xét ΔDES vuông tại E và ΔDKF vuông tại K có

\(\widehat{DSE}=\widehat{DFK}\)

Do đó: ΔDES đồng dạng với ΔDKF

c: Kẻ tiếp tuyến Fx của (O)

Xét (O) có

\(\widehat{xFE}\) là góc tạo bởi tiếp tuyến Fx và dây cung FE

\(\widehat{EDM}\) là góc nội tiếp chắn cung EF

Do đó: \(\widehat{xFE}=\widehat{EDM}\)

mà \(\widehat{EDM}=\widehat{MKF}\left(=180^0-\widehat{MKE}\right)\)

nên \(\widehat{xFE}=\widehat{MFK}\)

mà hai góc này là hai góc ở vị trí so le trong

nên MK//Fx

Ta có: MK//Fx

OF\(\perp\)Fx

Do đó: OF\(\perp\)MK

11 tháng 4 2016

d, từ C kẻ đường thẳng // với PM cắt AE,AB tại Q và K 

lấy H là trung điểm của BC

=>OH vuông góc với BC

H và E cùng nhìn OP dưới 1 góc 90 =>tứ giác OHEP nội tiếp =>góc MPH = góc OEH mà góc MPH = góc KCH (PM//CK) =>góc KCH= góc OEH =>tứ giác HQCE nội tiếp =>góc QHC = góc AEC mà góc AEC = góc ABC =>góc QHC=góc ABC =>QH//AB mà H là trung điểm BC

=>Q là trung điểm CK 

Áp dụng định lí TA-let ta được tam giác AMO đồng dạng tam giác AKQ =>MO/KQ=AO/AQ 

cmtt NO/CQ=AO/AQ mà CQ=KQ =>OM=ON

25 tháng 3 2021

a. xét tứ giác EKHF có

\(\widehat{HKE}=90độ\) (FK là đường cao)

\(\widehat{KHF}=90độ\) (EH là đường cao)

⇒ \(\widehat{HKE}+\widehat{KHF}=90+90=180độ\)

⇒tứ giác EKHF là tứ giác nội tiếp

a) Xét tứ giác EKHF có 

\(\widehat{EKF}=\widehat{EHF}\left(=90^0\right)\)

\(\widehat{EKF}\) và \(\widehat{EHF}\) là hai góc cùng nhìn cạnh EF

Do đó: EKHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)