Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(NF=DF-DN=24-9=15cm\)
Áp dụng định lí Ta-let vào \(\Delta DEF\) có MN//EF: \(\dfrac{DM}{ME}=\dfrac{DN}{NF}\Leftrightarrow\dfrac{DM}{10}=\dfrac{9}{15}\Rightarrow DM=6\left(cm\right)\)
a: ΔDEF vuông tại D
=>\(DE^2+DF^2+EF^2\)
=>\(EF^2=9^2+12^2=225\)
=>\(EF=\sqrt{225}=15\left(cm\right)\)
Ta có; ΔDEF vuông tại D
mà DM là đường trung tuyến
nên \(DM=\dfrac{EF}{2}=7,5\left(cm\right)\)
b: Xét tứ giác DNMK có
\(\widehat{DNM}=\widehat{DKM}=\widehat{KDN}=90^0\)
=>DNMK là hình chữ nhật
c: Xét ΔDEF có MN//DF
nên \(\dfrac{MN}{DF}=\dfrac{EM}{EF}\)
=>\(\dfrac{MN}{DF}=\dfrac{1}{2}\)
mà \(MN=\dfrac{1}{2}MH\)
nên MH=DF
Ta có: MN//DF
N\(\in\)MH
Do đó: MH//DF
Xét tứ giác DHMF có
MH//DF
MH=DF
Do đó: DHMF là hình bình hành
=>DM cắt HF tại trung điểm của mỗi đường
mà O là trung điểm của DM
nên O là trung điểm của HF
=>H,O,F thẳng hàng
a: EP/FP=DE/DF=3/4
b: Xet ΔFHP vuông tại H và ΔFDE vuông tại D có
góc HFP chung
=>ΔFHP đồng dạng vơi ΔFDE
c: ΔFHP đồng dạng với ΔFDE
=>HP/DE=FP/FE=4/7
=>HP/9=4/7
=>HP=36/7(cm)
a: D ở đâu vậy bạn?
b: EN+EM=MN
=>EM=7,5-5=2,5cm
Xét ΔNMK có EF//MK
nên NE/EM=NF/FK
=>NF/2=5/2,5=2
=>NF=4(cm)
Hình bạn tự vẽ nhé!
Ta có PQ // EF
Áp dụng định lý Talet trong tam giác DEF ta có:
Mà DP = x, PE = 10,5 ; DQ = 9 ; QF = DF – DQ = 24 – 9 = 15
Do đó ta có :
⇒ 15x = 9.10,5
⇔ 15x = 94,5
⇔ x = 94,5:15 = 6,3
Vậy x = 6,3.