K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

Tự vẽ hình~

Xét tam giác ABC và tam giác DFE

\(\frac{AB}{EF}=\frac{6}{12}=\frac{1}{2}\)

\(\frac{AC}{FE}=\frac{9}{18}=\frac{1}{2}\)

 \(\frac{BC}{DE}=\frac{12}{24}=\frac{1}{2}\)

\(\Rightarrow\frac{AB}{DF}=\frac{AC}{FE}=\frac{BC}{DE}=\frac{1}{2}\)

=>Tam giác ABC đồng đang với tam giác DFE (c.c.c)

a: Xét ΔDEF vuông tại D và ΔHED vuông tại H có

góc DEF chung

Do đó:ΔDEF\(\sim\)ΔHED

b: Xét ΔDEF vuông tại D có DH là đường cao

nên \(DH^2=HE\cdot HF\)

3 tháng 5 2022

a. xét tam giác DEF và tam giác HED:

góc D= góc H= 90o

góc E chung

=> tam giác DEF ~ tam giác HED (g.g)

b. xét tam giác DHF và tam giác EDF:

góc D= góc H = 90o

góc F chung

=> tam giác DHF ~ tam giác EDF

=> tam giác DHF~tam giác EHD (tính chất bắc cầu)

=> \(\dfrac{DH}{HF}\)=\(\dfrac{HE}{DH}\)

vậy DH2=HE.HF

a: Xét ΔDNH vuông tại N và ΔDMF vuông tại M có

góc MDF chung

=>ΔDNH đồng dạng với ΔDMF

b: Xét ΔEMH vuông tại M và ΔENF vuông tại N có

góc MEH chung

=>ΔEMH đồng dạng với ΔENF

c: Xét ΔEIH có

EM vừa là đường cao, vừa là trung tuyến

=>ΔEIH cân tại E

29 tháng 3 2022

undefined

a) Xét Δ DEF vuông tại D ( gt ) có:

∠ DFE + ∠ DEF = 90( Tổng 2 góc nọn trong Δ vuông)

Tương tự, ta có :

∠ DFK + ∠ KDF = 90o

=> ∠ KDF = ∠ DEF 

Xét Δ KDE và Δ DFE có:

∠ KDF = ∠ DEF (cmt)

∠ DKE = ∠ EDF ( = 90o )

=> Δ KDE ∞ Δ DFE

b) Tương tự, ta có 

Δ KFD ∞ Δ DFE 

=> Δ KFD ∞ Δ KDE 

=> \(\dfrac{DK}{KE}\)\(\dfrac{KF}{DK}\)

=> DK= KE.KF