Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔDEF cân tại D
mà DI là đường trung tuyến
nên DI là phân giác
b: Xét ΔDMI vuông tại M và ΔDNI vuông tại N có
DI chung
\(\widehat{MDI}=\widehat{NDI}\)
DO đó; ΔDMI=ΔDNI
Suy ra: IM=IN
hay ΔIMN cân tại I
A B C D H E M
a) Xét tam giác ABC ta có
BC2=52=25
AB2+AC2=25
->BC2=AC2+AB2->tam giác ABC vuông tại A ( đinh lý pitago đảo)
b) xét tam giác BAD và tam giác EDA ta có
BD=AE (gt)
AD=AD ( cạnh chung)
góc BDA = góc EAD ( 2 góc sole trong và AE//BD)
-> tam giac BAD= tam giac EDA (c-g-c)
=> AB=DE ( 2 cạnh tương ứng)
c)ta có
góc CAD+ góc BAD =90 (2 góc kề phụ)
góc CDA+ góc DAH=90 ( tam giác ADH vuông tại H)
góc BAD=góc DAH ( AD là tia p./g góc BAH)
->góc CAD=góc CDA
-> tam giác ADC cân tại C
d) Xét tam giác ADC cân tại C ta có
CM là đường trung tuyến ( M là trung điểm AD)
-> CM là đường cao
ta có
góc BAD= góc ADE ( tam giác BAD= tam giác EDA)
mà 2 góc nằm ở vị trí sole trong nên AB//DE
mặt khác AB vuông góc AC ( tam giác ABC vuông tại A)
do đó DE vuông góc AC
Gọi F là giao điểm DE và AC
Xét tam giác CAD ta có
DF là đường cao (DE vuông góc AC tại F)
AH là đường cao (AH vuông góc BC)
AH cắt DE tại I (gt)
-> I là trực tâm
mà CM cũng là đường cao tam giác ACD (cmt)
nên CM đi qua I
-> C,M ,I thẳng hàng
Giải: (hình bn vẽ nha)
a,
- Xét △DEI và △DMI, có:
DE = DM (theo giả thiết)
EI = MI (theo giả thiết)
DI_cạnh chung
=> △DEI = △DMI (c.c.c)
b,
- Có △DEI = △DMI (chứng minh trên)
=> ∠DIE = ∠DIM (2 cạnh tương ứng)
mà 2 góc này kề bù
=> ∠DIE = ∠DIM = \(\dfrac{180^o}{2}\) = \(90^o\)
<=> DI ⊥ EM tại I
c,
- Có \(\left\{{}\begin{matrix}DN=EM\\DI=IH\\DI\text{⊥EM}\end{matrix}\right.\)(theo giả thiết/ chứng minh trên)
=> △DNI = △EIH
Do đó, ta có 3 điểm N, E, H thẳng hàng.