K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2020

D E F I M K

a. Xét tam giác EMF và tam giác IMD có 

                MF = MD [ gt ]

               góc EMF = góc IMD [ đối đỉnh ]

              EM = IM [ gt ]

Do đó ; tam giác EMF = tam giác IMD [ c.g.c ]

b.Xét tam giác DME và tam giác FMI có 

               DM = FM [ gt ]

              góc DME = góc FMI [ đối đỉnh ]

              ME = MI [ gt ]

Do đó ; tam giác DME = tam giác FMI [ c.g.c ]

\(\Rightarrow\)DE = FI [ cạnh tương ứng ]

mà DE = DF [ vì tam giác DEF cân tại D ]

\(\Rightarrow\)FI = FD 

Vậy tam giác DFI cân tại F 

29 tháng 6 2020

DI//FF????

30 tháng 6 2020

Đề bài có ghi là KF=DF chứ ko phải là DK=DF đâu bạn ơi

30 tháng 4 2019

a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)

hay\(5^2=3^2+DF^2\)

\(\Rightarrow DF^2=5^2-3^2=25-9=16\)

\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)

Ta có:\(DE=3cm\)

\(DF=4cm\)

\(EF=5cm\)

\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)

b)Xét\(\Delta DEF\)\(\Delta DKF\)có:

\(DE=DK\)(\(D\)là trung điểm của\(EK\))

\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)

\(DF\)là cạnh chung

Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)

\(\Rightarrow EF=KF\)(2 cạnh t/ứ)

Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)

Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)

c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

Ta lại có:​\(DF\)cắt\(KI\)tại\(G\)

mà​\(DF\)​là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)

\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))

\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)

Vậy\(GF\approx2,7cm\)

16 tháng 5 2022

câu a bị lx

16 tháng 5 2022

lên nhanh thế cj

 

a) Xét ΔDEF vuông tại E và ΔDEK vuông tại E có 

DE chung

EF=EK(gt)

Do đó: ΔDEF=ΔDEK(hai cạnh góc vuông)