K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2018

Bạn tự vẽ hình nha

a) +)Ta có \(\Delta DEF\)cân tại D (gt) nên DE=DF( suy ra từ khái niệm)

                                                                \(\widehat{E}=\widehat{F}\)(suy ra từ tính chất)

+) K là trung điểm của EF (gt) nên KE=KF

+) Xét \(\Delta DEK\) và \(\Delta DFK\)ta có:

   DE=DF(cmt)

   \(\widehat{E}=\widehat{F}\)(cmt)

    KE=KF(cmt)

\(\Rightarrow\Delta DEK=\Delta DFK\left(c.g.c\right)\)

\(\Rightarrow\widehat{DKE}=\widehat{DKF}\)( hai góc tương ứng)  (1)

Mặt khác \(\widehat{DKE}+\widehat{DKF}=180\)(2)

Từ (1) và (2) suy ra \(\widehat{DKE}=\widehat{DKF}=\frac{1}{2}180=90\)

\(\Rightarrow DK\perp EF\)(đpcm)

b) +)Vì KE + KF = EF = 24 cm

mà  KE = KF (cmt) 

\(\Rightarrow KE=KF=\frac{1}{2}24=12\)

+) Áp dụng định lí PYTAGO vào \(\Delta DEK\)vuông tại D có

\(DE^2=DK^2+KE^2\)

\(DK^2=DE^2-KE^2\)

hay\(DK^2=15^2-12^2\)

\(DK=81\)(đpcm)

Vậy chu vi \(\Delta DEK\)là 

DE+DK+KE=15+81+12=108(cm)

23 tháng 2 2018

bn tự vẽ hình nha

a)  c1: nếu bn đã học tính chất: trong 1 tam giác cân đường cao đồng thời là phân giác, trung tuyến, trung trực

thì bn lm như sau:

vì k là trung điểm của ef =>dk là trung tuyến của tam giác def

mà tam giác def cân tại d => dk là đường cao của tam giác def

=>dk vuông góc với ef

a) c2 nêu bn chưa học tính chất trên thì bn làm như sau:

xét tam giác dke và tam giác dkf có: cạnh dk chung, de=df( tam giác def cân tại d), ke=kf( k là trung điểm của ef)

=> tam giác dke= tam giác dkf (c.c.c)

=> góc dke= góc dkf( 2 góc tương ứng)[ vt chữ góc lâu quá nên mk ko vt góc bn cx tự hiểu nha)

mà dke+dkf=180 ( 2 góc kề bù) => dke=dkf=90 độ

=> dk vuông góc với ef

b)vì k là trung điểm của ef => ke=kf=ef/2=24/2=12(cm)

vì dk vuông góc với ef (câu a)=> tam giác dke vuông tại k

=>\(de^2=dk^2+ek^2\Rightarrow dk^2=15^2-12^2=81\Rightarrow dk=9\)( vì de>0)

Chu vi tam giác dke là: 15+12+9=36(cm)

31 tháng 12 2017

Câu 1: giống bài vừa nãy t làm cho bạn rồi!

Câu 2:

vì 2 tam giác đó = nhau => KE=KF, mà DE=DF => DK là trung trực của EF (ĐPCM)

Câu 3 :

sửa đề chút nha : EF là tia phân giác góc DEH

ta có EH//DF => \(\widehat{DFE}=\widehat{FEH}\) (so lr trong)

mà 2 tam giác kia = nhau (câu a) =>\(\widehat{DFE}=\widehat{HEF}\)

=>\(\widehat{HEF}=\widehat{DEF}\) => EF là tia phân giác góc DEF (ĐPCM)

3 tháng 5 2018

D K F E

      Xét tam giác vuông EDK vuông tại K

  => ED2 = DK2+EK2  ( ĐỊNH LÍ Py ta go)

  =>EK2 = ED2-DK2 = 102-82 = 100-64 = 36

   => EK = \(\sqrt{36}\) = 6

=> EK = 6 cm

Xét tam giác vuông DKF vuông tại K

=> DF= KF2+DK2  ( định lí Py ta go)

=>KF2 = DF2-KF= 152-82 = 225-64 = 161

=> KF =\(\sqrt{161}\) cm

Vì EK+KF=EF => EF= 6+\(\sqrt{161}\) 

  Chu vi tam giác DEF là

       ( 6+\(\sqrt{161}\) ) + 10+15 = 6+\(\sqrt{161}\) + 25  (cm)

                                   đ/s  ....

3 tháng 2 2019

tu  ve hinh :

cau b la vuong goc phai k

a, tamgiac ABC can tai A(gt) => AB = AC va goc ABC = goc ACB (dn)

goc ADB = goc ADC do AD | BC (GT)

=> tamgiac ADB = tamgiac ADC (ch - gn)

=> BD = DC (dn)

b, xet tamgiac BHD va tamgiac CKD co :  BD = DC (Cau a)

goc ABC = goc ACB (cau a)

goc BHD = goc DKC = 90 do HD | AB va HK | AC (gt)

=> tamgiac BHD = tamgiac CKD (ch - gn)

=> HD = DK (dn)

c, xet tamgiac AHD va tamgiac AKD co : AD chung

HD = DK (cau b) 

goc AHD = goc AKD = 90 do HD | AB va HK | AC (gt) 

=> tamgiac AHD = tamgiac AKD  (ch - cgv)

=> tamgiac AHK can tai A (dn)

=> goc AHK = (180 - goc BAC) : 2

tamgiac ABC can tai A (gt) => goc ABC = (180 - goc BAC) : 2

=> goc AHK = goc ABC  2 goc nay dong vi

=> HK // BC (tc)

d, tu ap dung py-ta-go 

4 tháng 2 2019

bài 2 nữa ạ

20 tháng 12 2016

câu cuối là chứng minh DK = 1/2 KF nka, giúp mk nka mn mk mai phải nộp bài rùi

 

20 tháng 12 2016

sao mk ko vẽ đc hình Sakura ơi, đề sai à

15 tháng 5 2020

a, Ta có: DK là đường cao trong tam giác cân DEF

⇒DK vừa là đường cao, vừa là đường trung tuyến trong tam giác cân

⇒KE=KF

Ta có: KE=KF=EF/2=8/2=4 (cm)

Xét Δ vuông DKF 

Theo định lý Pi-ta-go, ta có:

DF²=DK²+KF²

⇒DK²=DF²-KF²

⇒DK²=5²-4²

⇒DK²=9