Cho tam giác DEF cân tại D. Các đường phân giác EM, FN cắt nhau tại K. Chứng minh rằng
...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2022
Gọi giao điểm của EF và DK là H Xét ∆DHE và ∆DHF,có: DH là cạnh chung DE=DF(∆DEF cân tại D) góc DEH=góc DFH(∆DEF cân tạiD) =>∆DHE=∆DHF(c.g.c) =>HE=HF(cạnh tương ứng) =>H là cạnh chung điểm của EF ∆DHE=∆DHF=>DH đi qua trung điểm của EF DK " ____________ "
30 tháng 4 2019

a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)

hay\(5^2=3^2+DF^2\)

\(\Rightarrow DF^2=5^2-3^2=25-9=16\)

\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)

Ta có:\(DE=3cm\)

\(DF=4cm\)

\(EF=5cm\)

\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)

b)Xét\(\Delta DEF\)\(\Delta DKF\)có:

\(DE=DK\)(\(D\)là trung điểm của\(EK\))

\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)

\(DF\)là cạnh chung

Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)

\(\Rightarrow EF=KF\)(2 cạnh t/ứ)

Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)

Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)

c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

Ta lại có:​\(DF\)cắt\(KI\)tại\(G\)

mà​\(DF\)​là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)

\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))

\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)

Vậy\(GF\approx2,7cm\)

31 tháng 12 2017

Câu 1: giống bài vừa nãy t làm cho bạn rồi!

Câu 2:

vì 2 tam giác đó = nhau => KE=KF, mà DE=DF => DK là trung trực của EF (ĐPCM)

Câu 3 :

sửa đề chút nha : EF là tia phân giác góc DEH

ta có EH//DF => \(\widehat{DFE}=\widehat{FEH}\) (so lr trong)

mà 2 tam giác kia = nhau (câu a) =>\(\widehat{DFE}=\widehat{HEF}\)

=>\(\widehat{HEF}=\widehat{DEF}\) => EF là tia phân giác góc DEF (ĐPCM)

a: Xét ΔEDK có 

EM là đường cao

EM là đường phân giác

Do đó: ΔEDK cân tại E

b: Xét ΔEDM và ΔEKM có

ED=EK

\(\widehat{DEM}=\widehat{KEM}\)

EM chung

DO đó: ΔEDM=ΔEKM

Suy ra: DM=DK

mà ED=EK

nên EM là đường trung trực của DK

18 tháng 11 2017

9 tháng 3 2020

D K H E I F O

tam giác DEF cân tại D suy ra DE=DF, góc DEF = góc DFE

Xét tam giác KEF và tam giác HFE

có EF chung

góc EKF=góc EHF = 900

góc KEF=góc  HFE  (CMT)

suy ra  tam giác KEF và tam giác HFE (cạnh huyền-góc nhọn)

suy ra EK = HF

mà DK+KE=DE, DH+HF=DF

lại có DE=DF (CMT)

suy ra KD=DH

b) xét tam giác DKO và tam giác DHO

có DO chung

góc DKO = góc DHO = 900

DK = DH (CMT)

suy ra tam giác DKO = tam giác DHO ( cạnh huyền-cạnh góc vuông)

suy ra góc KDO = góc HDO

suy ra DO là tia phân giác của góc EDF  (1)

c) Vì DK = DH suy ra tam giác DKH cân tại D

suy ra góc DKH= góc DHK

suy ra góc DKH+ góc DHK + góc KDH = 1800

suy ra góc DKH=(1800 - góc KDH) :2  (2) 

Tam giác DEF cân tại D

suy ra góc DEF + góc DFE + góc EDF = 1800

suy ra góc DEF = (1800 - góc KDH) :2 (3)

Từ (2) và (3) suy ra góc DKH = góc DEF

mà góc DKH đồng vị với góc DEF 

suy ra KH // EF

d) Xét tam giác DEI và tam giác DFI

có DE = DF  (CMT)

DI chung

EI = IF 

suy ra tam giác DEI = tam giác DFI (c.c.c)

suy ra góc EDI = góc FDI

suy ra DI là tia phân giác của góc EDF  (4)

Từ (1) và (4) suy ra DO trùng DI

hay ba điểm D, O, I thẳng hàng.

5 tháng 5 2017

Chứng minh được AI là đường trung tuyến của tam giác ABC, từ đó IE = IF.